K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

A B C M N D E

a. Do ABC là tam giác cân tại A nên AB = AC hay AN = NB = CM = MA.

Xét tam giác AMB và ANC có:

AM = AN; AB = AC; góc A chung nên \(\Delta AMB=\Delta ANC\left(c-g-c\right)\)

b. Từ câu a, \(\widehat{ABM}=\widehat{ACN}\) (Hai góc tương ứng)

Mà tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)

Suy ra \(\widehat{DBC}=\widehat{DCB}\) hay tam giác BDC cân tại D.

c. Ta thấy \(\Delta ABE\) và \(\Delta ACE\) có : \(\widehat{B}=\widehat{C}=90^o;\) AB = AB; AE chung

nên \(\Delta ABE\)\(\Delta ACE\left(ch-cgv\right)\Rightarrow EB=EC\)

Ta thấy AB = AC, DB = DC, EB = EC nên A, D, E cùng thuộc đường trung trực của BC. Vậy chúng thẳng hàng.

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại Da) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng ABb) tam giác DMC là tam giác jk ? vì sao ?2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM...
Đọc tiếp

1) cho góc xOy có Oz là tia phân giác , M là điểm bất kì thuộc tia Oz . qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc Oy tại B cắt tia Ox tại D

a) chứng minh tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực  của đoạn thẳng AB

b) tam giác DMC là tam giác jk ? vì sao ?

2) cho tam giác ABC có góc A = 90 và đường phận giác BH ( H thuộc AC ) kẻ HM vuông góc với BC ( M thuộc BC ) gọi N là gia điểm của AB và MH chúng minh

a) tam giác ABH bằng tam giác MBH

b) BH là đương trung trực cyar đoạn thẳng AM

c) AM//CN

d) BH vuông góc với CN

3) cho tam giác ABC vuông tại C có góc A = 60 và đường phân giác cua góc BAC cắt BC tại E kẻ EK vuông góc với AB tại K ( K thuộc AB ) kẻ BD vuông góc với AE tại D ( D thuộc AE ) chứng minh

a) tam giác ACE bằng tam giác AKE

b)AE là đường trung trực của đoạn thẳng CK

c) KA=KB

4) cho tam giác ABC có góc A = 90 vẽ phân giác BD và CE ( D thuộc ac , E thuộc AB ) chúng cắt nhau tại O

a) tính số đo góc BOC

b) trên BC lấy M,N sao cho BM=BA, CN=CA chứng minh EN//DM

c) gọi I là giao điểm của BD VÀ AN . chứng minh tam giác AIM vuông cân

5) cho tam giác ABC ( AB=AC ) gọi K là trung điểm của BC

a) chứng minh tam giác AKB tam giác AKC và AK vuông góc với BC

b) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E chúng minh EC //AK

c) tam giác BCE là tam giác jk ? tính góc BEC

6) cho tam giác ABC biết AB < BC trên tia BA lấy điểm D sao cho BC= BD nối C với D . phân giác góc B cắt cạn AC , DC lần lượt ở E và I 

a) chứng minh tam giác BED = tam giác BEC và IC=ID

b) từ A vẽ đường vuông góc AH với DC ( H thuộc DC ) . chứng minh AH//BL

       VẼ HÌNH VÀ GIẢI CHI TIẾT CÁC BAI HỘ MÌNH NHA

 

5
14 tháng 2 2018

3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)

a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))

Cạnh huyền AE chung

=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)

b/ Ta có \(\Delta ACE\)\(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)

Gọi M là giao điểm của AE và CK.

\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)

\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))

Cạnh AM chung

=> \(\Delta ACM\)\(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)

\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)

Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)

=> 2\(\widehat{AMC}\)= 180o

=> \(\widehat{AMC}\)= 90o

=> AM \(\perp\)CK (2)

Từ (1) và (2) => AE là đường trung trực của CK (đpcm)

14 tháng 2 2018

tsk nha

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại Ea) chứng minh AB=EBb) chứng minh tam giác BED vuôngc) DE cắt AB tại F, chứng minh AE//FCBÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại Ia) chứng minh tam giác IBC cânb)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quyBÀI 3 cho tam giác ABC...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

2
5 tháng 10 2017

BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E

a) chứng minh AB=EB

b) chứng minh tam giác BED vuông

c) DE cắt AB tại F, chứng minh AE//FC

BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I

a) chứng minh tam giác IBC cân

b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy

BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm

a)so sánh góc A và góc C

b)chứng minh rằng tam giác ABH = tam giác ACH

c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG

d)tính độ dài AG

e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG

BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F

a)chứng minh tam giác ABE = tam giác DBE

b) chứng minh tam giác BCF cân

c) chứng minh 3 điểm F.D,E thẳng hàng

d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM

BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I

a)chứng minh rằng tam giác BDC = tam giác CEB

b)so sánh góc IBE và góc ICD

c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H

BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm

a)tính BC

b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB

c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE

d) chứng minh BE vuông góc FC

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.  a) Chứng minh: KE // BC  b) Chứng minh: tam giác DEF đều2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.  a) Chứng minh: BH = AK  b) Chứng minh: tam giác MHK vuông cân.3) Cho tam...
Đọc tiếp

1) Cho tam giác ABC đều. Trên AB lấy 2 điểm D và K sao cho AD = DK = KB. Từ d kẻ đường thẳng vuông góc với AB ở E. Từ E kẻ đường thẳng vuông góc với AC cắt BC ở F.

  a) Chứng minh: KE // BC

  b) Chứng minh: tam giác DEF đều

2) Cho tam giác ABC vuông cân tại A, trung tuyến AM. E là điểm bất kì trên MC. Kẻ BH, CK cùng vuông góc với tia AE.

  a) Chứng minh: BH = AK

  b) Chứng minh: tam giác MHK vuông cân.

3) Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Trên tia đối tia MB lấy N sao cho MB = MN. Đường thẳng qua B // AC cắt NC ở P. Vẽ phân giác BD của góc ABM. Qua D kẻ đường thẳng BM cắt BM ở H và cắt CP ở K.

  a) Chứng minh: CN = CA

  b) Chứng minh tam giác BPC vuông cân

c) Chứng minh: KH = KP

  d) Tính góc DBK

  e) Biết BC = 8cm. Tính chu vi tam giác DKC

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a. Xét hai tam giác vuông ABD và tam giác vuông MBD có

               góc BAD = góc BMD = 90độ

                cạnh BD chung

               góc ABD = góc MBD 

Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)AB = MB 

b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ 

\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC

\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)

\(\Rightarrow\Delta BCD\)cân tại D

Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)

\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC

\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC

c,Xét tam giác ADE và tam giác MDC có 

 \(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)

\(\widehat{DAE}=\widehat{DMC}=90^O\)

AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)

Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)

\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)

\(\Rightarrow BE=BC\)

\(Xét\Delta BEF\)và \(\Delta BCFcó\)

góc EBF = góc CBF

BF cạnh chung

BE=BC

Do đó tam giác BEF =tam giác BCF [c.g.c]

\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)

\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng

Chúc bạn học tốt

13 tháng 3 2022

hơi sai sai ở phần cuối