K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

 Trên tia đối AB lấy I sao cho AI = AB 
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD 
Ta có hình vuông IAMD => IA = IM = MD = DA 
Xét [​IMG]MBI và [​IMG]CMN 
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vì[​IMG] và IA = IM \Rightarrow [​IMG])
[​IMG] (gt)
\Leftrightarrow [​IMG]MBI = [​IMG]CMI (c - g - c)
\Rightarrow [​IMG] ; BM = CM \Rightarrow [​IMG] BMC cân ở M (|-)1)
Xét [​IMG]BIM và [​IMG]EAB 
AB = MI 
AE = BI 
[​IMG]
\Leftrightarrow [​IMG]BIM = [​IMG]EAB (c - g - c)
\Rightarrow [​IMG] (góc tương ứng)

Ta có:
[​IMG]
Mà: [​IMG] 
\Rightarrow [​IMG] 
\Rightarrow [​IMG]BMC vuông ở M :)-*2)

Từ (|-)1) và :)-*2) 
\Rightarrow [​IMG]MCB vuông cân ở M 
\Rightarrow [​IMG] hay [​IMG] 
Lại có:
[​IMG]
\Rightarrow [​IMG] (đpcm)
:-*:-*:-*:-*:-*|-)|-)|-):-SS:-SS:D:D:D:D:D;););)

;);)

Cách 1: 
Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o.

18 tháng 1 2020

A B O P D C H 1 1

18 tháng 1 2020

a) Ta có : \(\widehat{A_1}=\frac{1}{2}sđ\widebat{CD}\) ; \(\widehat{B_1}=\frac{1}{2}sđ\widebat{CD}\)

Mà \(\widehat{COD}=sđ\widebat{CD}=90^o\)

Từ đó suy ra \(\widehat{A_1}=\widehat{B_1}=45^o\)

\(\Delta ABD\)nội tiếp ( O ) đường kính AB nên vuông tại D

\(\Rightarrow\Delta BDP\)vuông tại D có \(\widehat{B_1}=45^o\)nên vuông cân

Tương tự : \(\Delta ACP\)vuông cân 

b) Xét \(\Delta ABP\)có \(BD\perp AP;AC\perp BP\)và chúng cắt nhau tại H nên H là trực tâm

\(\Rightarrow PH\perp AB\)

22 tháng 1 2019

xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ 

mà góc CDB+ góc ACB=90 độ 

suy ra góc DBC =90 độ

suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)

Áp dụng hệ thức lượng vào tam giác DBC ta có:

1/BC^2+1/BD^2=1/AB^2( ĐPCM)