K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

tick đi  rồi tớ làm hộ cho

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

9 tháng 2 2021

a) Xét tam giác BAH và tam giác CAH, có:

AH: cạnh chung

AB = AC ( tam giác ABC cân tại A )

góc AHB = góc AHC ( = 90 độ )

-> tam giác BAH = tam giác CAH ( ch-cgv )

-> HB = HC ( 2 cạnh tương ứng )

b) Xét tam giác FBH và tam giác ECH, có:

HB = HC ( cmt )

góc D = góc E ( = 90 độ )

góc B = góc C ( tam giác ABC cân tại A )

-> tam giác FBH = tam giác ECH ( ch-gn )

-> HF = HE ( 2 cạnh tương ứng )

-> tam giác HEF là tam giác cân tại H

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔFHB=ΔEHC(cạnh huyền-góc nhọn)

Suy ra: HF=HE(Hai cạnh tương ứng)

Xét ΔHEF có HF=HE(cmt)

nên ΔHEF cân tại H(Định nghĩa tam giác cân)

12 tháng 4 2016

yêu cầu của câu c là gì vậy

12 tháng 4 2016

a)

xét 2 tam giác vuông ABH và ACH có:

AB=AC(gt)

AH(chung)

suy ra tam giác ABH=ACH(CH-CGV)

suy ra BH=CH và BAH=CAH

18 tháng 3 2022

`Answer:`

Sửa đề phần c: Chứng minh KF//BC.

C H B A F K

a. Xét `\triangleAHB` và `\triangleAHC`

`AH` chung

`\hat{AHB}=\hat{AHC}=90^o`

`AB=AC`

`=>\triangleAHB=\triangleAHC(ch-cgv)`

b. Xét `\triangleFAH` và `\triangleKAH`

`AH` chung

`\hat{FAH}=\hat{KAH}`

`\hat{AFH}=\hat{AKH}=90^o`

`=>\triangleFAH=\triangleKAH(ch-gn)`

`=>HK=HF`

c. Theo phần b. `\triangleFAH=\triangleKAH`

`=>AF=AK`

`=>\triangleAFK` cân ở `A`

Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`

`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)

hình tự vẽ nhé.

xét: \(\Delta AHB\) VÀ   \(\Delta AHC\) CÓ:

\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)

\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)

b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)

XÉT: \(\Delta KBH\)VÀ    \(\Delta FCH\) CÓ:

\(BH=CH\left(cmt\right)\)

​​\(\widehat{BKH}=\widehat{CFH}=90^0\)

\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)

\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)

\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)

c) ta có:  \(AB=AC;;BK=FK\left(cmt\right)\)

\(\Rightarrow AB-BK=AC-FC\)

\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A

\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)

TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

​mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)

21 tháng 3 2020

sai đề rồi cậu ơi !