K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\widehat{ABH}=180^0-112^0=68^0\)

Xét ΔAHB vuông tại H có

\(\widehat{ABH}+\widehat{BAH}=90^0\)

nên \(\widehat{BAH}=22^0\)

Vì ΔABC cân tại B

nên \(\widehat{BAC}=\dfrac{180^0-112^0}{2}=34^0\)

mà AD là phân giác

nên \(\widehat{BAD}=17^0\)

=>\(\widehat{HAD}=39^0\)

hay \(\widehat{HDA}=51^0\)

2 tháng 12 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Ta có: ∠(ABH) + ∠(ABC) = 180º ( hai góc kề bù)

Suy ra: ∠(ABH) = 180º - ∠(ABC) = 180º − 112º = 68º

+) Xét tam giác AHB vuông tại H ta có:

∠A1+ ∠(ABH) = 90º ( tính chất tam giác vuông)

Suy ra: ∠A1= 90º − ∠(ABH) = 90º − 68º = 22º

+) Tam giác ABC cân tại B nên ∠(BAC) = ∠(ACB)

Lại có ∠(ABC) = 112º và ∠(BAC)+ ∠(ACB) + ∠(ABC) = 180º nên

∠(BAC) = (180º − 112º) : 2 = 34o

+) Do AD là tia phân giác của góc BAC nên

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+ Từ đó

∠(HAD) = ∠A1 + ∠A2= 22º + 17º = 39º.

Tam giác HAD vuông tại H nên: ∠(HDA)+ ∠(HAD) = 90º

Suy ra: ∠(HDA) = 90º − ∠(HAD) = 90º − 39º = 51º

28 tháng 8 2021

giải giúp mik với ạ. ai làm được mik tick luôn

 

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có 
AD chung

\(\widehat{HAD}=\widehat{EAD}\)

Do đó: ΔAHD=ΔAED

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

Xét ΔABD có \(\widehat{BAD}=\widehat{BDA}\)

nên ΔBAD cân tại B

c: Xét ΔHDK vuông tại H và ΔEDC vuông tại E có 

DH=DE

\(\widehat{HDK}=\widehat{EDC}\)

Do đó: ΔHDK=ΔEDC

1 tháng 11 2017

em chịu rồi chị ơi

1 tháng 11 2017

A B C H D

-Do Ad là tia phân gaisc của \(\widehat{A}\) nên \(\widehat{BAD}\)\(=\widehat{CAD}\)\(45^o\)

=> \(\widehat{BAH}\)\(=\widehat{BAD}-\widehat{HAD}=45^o-15^o=30^o\)

-Xét tam giác ABH vuông tại H có: \(\widehat{B}=90^o-\widehat{BAH}=90^o-30^o=65^o\)

-Xét tam giác ABC vuông tại A có: \(\widehat{C}=90^o-\widehat{B}=90^o-65^o=25^o\)

Vậy \(\widehat{B}=65^o\),  \(\widehat{C}=25^o\)

https://olm.vn/thanhvien/kaito1412tv

Bạn vào đây là có nhé

30 tháng 7 2017

a) Tam giác ABC cân tại A, đường cao AH => H là trung điểm BC.

Xét tam giác BEC có HF song song với BE và đi qua trung điểm BC nên HF = 1/2 BE (ở đây chứng minh hơi cực, bạn tham khảo bài 63 và 64 trang 146 SBT Toán 7 tập một).

Kết hợp với giả thiết => tam giác AHF cân tại H.

b) Ta có ^EBH = ^FHC (do HF // BE), ^EBH = 1/2 ^ABC (BE là tia phân giác ^ABC) và ^ABC = ^HCF (tam giác ABC cân tại A) => ^FHC = 1/2 ^HCF.

c) Ta có ^HFA là góc ngoài tại đỉnh F của tam giác HFC nên ^HFA = ^FHC + ^HCF.

Kết hợp tam giác AHF cân tại H => ^HAC = ^FHC + ^HCF = 1/2 ^HCF + ^HCF = 3/2 ^HCF.

Tam giác AHC vuông tại H => ^HAC + ^HCF = 90 độ hay 3/2 ^HCF + ^HCF = 90 độ => ^HCF = 36 độ. 

Từ đây bạn tính các góc còn lại.

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.