Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M I K E N
CM : a) Xét t/giác ABM và t/giác ACN
có AB = AC (gt)
góc B = góc C ( vì t/giác ABC cân tại A)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
=> AM = AN (hai cạnh tương ứng)
b) Ta có: t/giác ABM = t/giác ACN (cmt)
=> góc BAM = góc CAN (hai góc tương ứng)
Xét t/giác AIM và t/giác AKN
có góc AIM = góc AKN = 900 (gt)
AM = AN (cmt)
góc IAM = góc KAN (cmt)
=> t/giác AIM = t/giác AKN ( ch - gn)
=> AI = AK (hai cạnh tương ứng)
c)tự làm
a)Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)và \(\widehat{B}=\widehat{C}\)
Xét \(\Delta AMB\)và \(\Delta ANC\)có
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(MB=MC\left(gt\right)\)
\(\Rightarrow\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow AM=AN\left(dpcm\right)\)
b) Có \(\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow\widehat{BAM}=\widehat{CAN}\)
Xét \(\Delta AIM\)và \(\Delta AKN\)có :
\(\widehat{AIM}=\widehat{AKN}=90^o\)
\(AM=AN\)
\(\widehat{BAM}=\widehat{CAN}\)
\(\Rightarrow\Delta AIM=\Delta AKN\left(ch-gn\right)\Rightarrow AI=AK\left(dpcm\right)\)
c) Xét \(\Delta IAE\)và \(\Delta KAE\)có :
\(AE:chung\)
\(\widehat{AIM}=\widehat{AKN}=90^o\)
\(AI=AK\left(cmt\right)\)
\(\Rightarrow\Delta IAE=\Delta KAE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAE}=\widehat{KAE}\) \(\Rightarrow AE\)là phân giác của \(\widehat{IAK}\)hay \(AE\)là phân giác của\(\widehat{BAC}\)
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!
a) Xét tam giác ABD và tam giác HBD có :
góc ABD = góc HBD (BD là tia pg)
góc BAD = góc BHD=90 độ (gt)
BD là cạnh chung
=> Tam giác ABD = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )
b) Xét tam giác DHC có :
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a: Xét ΔAMB và ΔANC có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có
AM=AN
\(\widehat{IAM}=\widehat{KAN}\)
Do đó: ΔAIN=ΔAKN
Suy ra: AI=AK