K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

a, ta có BN VÀ CN THEO THỨ TỰ  PHÂN GIÁC CỦA GÓC B VÀ GÓC C (GT)

  NEN B1=B2=1/2B VÀ C1=C2=1/2 C MÀ GÓC B = GÓC C 

(2 GÓC Ở ĐÁY CỦA TAM GIÁC CÂN ABC) =>GÓC B2 =GỐC C2

XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO

                              GÓC A CHUNG (GT)

                               GÓC B2 = GÓC C2

                               CANH AB=AC(GT

                         VẬY TAM GIÁC ABE=TAM GIÁC ACE (GCG) =>AD=AE

                 => TAM GIÁC AMN CÂN TẠI A

9 tháng 1 2018

a, Tam giác ABC cân tại A => AB = AC

Mà BM = CN => AB-BM = AC-CN => AM=AN => tam giác AMN cân tại A

=> góc AMN = (180 độ - góc A)/2

Lại có : tam giác ABC cân tại A nên : góc ABC  = (180 độ - góc A)/2

=> góc AMN = góc ABC

=> MN // BC ( vì có cặp góc đồng vị bằng nhau )

b, Đề phải là BN cắt CM tại 0 chứ bạn 

Tk mk nha

29 tháng 12 2016

do tam giác abc cân tại a

=>góc abc=180-2*góc a

do am=an

=>tam giác amn can taị a

=>góc amn=180-2*góc a

=>góc amn=góc abc(vì cùng bằng 

180-2*góc a)

mà hai góc này ở vị trí so le trong 

=>mn song song vs ab

xét 2 tam giác abn và acm có

chung góc a

am=an

ab=ac

=>tg abn=tg acm

=>bm=cm(2 cạnh tương ứng)

cau 2

theo đề bài ta có

tg abc đều =>ab=bc=ca

ad=be=cf

=>ab-ad=bc-be=ac-cf

hay bd=ce=af

xét 3 tg ade,bed và cef ta có

góc a=gócb=gócc

ad=be=cf

bd=ce=af

=> tg ade= tg bed= tg cef 

=>de=df=ef

=>tg def là tg đều

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2 (định lý py-ta-go)

=> 92 + AC2 = 152

=> AC2 = 225 - 81

=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)

t i c k đúng nhé

a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)

                              => góc C < góc B < góc A (định lý)

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #