Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔAEC vuông tại E và ΔADB vuông tại D có
AB=AC
góc A chung
Do đó: ΔAEC=ΔADB
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà góc EBC=góc DCB
nên BEDC là hình thang cân
Bài 2:
a: Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Ta có: \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)
\(\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)
a)Có: AB=AM+MB
AC=AN+NC
Mà: AB=AC(gt) ; BM=CN(gt)
=>AM=AN
=> ΔAMN cân tại A
=>\(\widehat{AMN}=\frac{180-\widehat{A}}{2}\) (1)
Xét ΔABC cân tại A(gt)
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AMN=^ABC.MÀ hai góc này ở vị trí soletrong
=>MN//BC
Lại có: ^B=^C(gt)
=>BMNC là hình thang cân
b) Có: \(\widehat{MBC}=\widehat{NCB}=\frac{180-\widehat{A}}{2}=\frac{180-40}{2}=\frac{140}{2}=70\) (vì BMNC là ht)
Có: ^MBC+^BMN=180
=>^BMN=180-^MBC=180-70=110
=>^BMN=^MNC=110