Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông: tam giác ABH và tam giác ACK có:
AB = AC (gt)
góc A chung
suy ra: tam giác ABH = tam giác ACK (ch-gn)
b) áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:
góc BAH + góc ABH = 90^0
=> góc ABH = 90^0 - góc BAH
=> góc ABH = 90^0 - 50^0 = 40^0
Tam giác ABC cân tại A => \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)
=> góc HBC = 25^0
Tương tự: góc KCB = 25^0
suy ra: góc BOC = 130^0
A B M C H K
a) Xết hai tam giác vuông AMH và AMK có:
AM: cạnh huyền chung
\(\widehat{HAM}=\widehat{KAM}\left(gt\right)\)
Vậy: \(\Delta AMH=\Delta AMK\left(ch-gn\right)\)
Suy ra: MH = MK (hai cạnh tương ứng)
b) Xét hai tam giác vuông MHB và MKC có:
MB = MC (gt)
MH = MK (cmt)
Vậy: \(\Delta MHB=\Delta MKC\left(ch-cgv\right)\)
Suy ra: \(\widehat{B}=\widehat{C}\) (hai góc tương ứng).