K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

đề bài có thiếu ko bn?

25 tháng 4 2019

Tự vẽ hình

Xét tam giác BDC và tam giác CEB có :

\(\widehat{B}=\widehat{C}\)( t/c của tia phân giác )

BC cạnh chung

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BDC = tam giác CEB ( g.c.g )

=> BD = CE ( 2 cạnh tương ứng )

b) Xét tam giác BEI và tam giác CDI có :

\(\widehat{I_1}=\widehat{I_3}\)( 2 góc đối đỉnh )

BD = CE ( cmt)

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BEI và tam giác CDI  ( g.c.g )

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

25 tháng 4 2019

Xét \(\Delta BDC\) và \(\Delta CEB\) có :

\(\widehat{B}=\widehat{C}\)(tính chất của tia phân giác)

BC chung

\(\widehat{E}=\widehat{D}=90^o\)

\(\Rightarrow\Delta BDC=\Delta CEB\left(g-c-g\right)\)

=> BD = CE ( 2 cạnh tương ứng )

b.  Xét \(\Delta BEI\) và \(\Delta CDI\) có :

\(\widehat{I_1}=\widehat{I_3}\)(2 góc đối đỉnh)

BD = CE(câu a)

\(\widehat{E}=\widehat{D}=90^o\)

=> \(\Delta BEI=\Delta CDI\left(g.c.g\right)\)  

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

5 tháng 5 2019

a) xét 2 tam giác vuông ABD và ACE có:

              AB=AC(gt)

             \(\widehat{A}\)chung

=> tam giác ABD=tam giác ACE(CH-GN)

b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE

=> tam giác AED cân tại A

c) ta thấy H là trực tâm của tam giác cân ABC

=> \(\widehat{BAH}\)=\(\widehat{CAH}\)

gọi O là giao điểm của AH và ED

xét tam giác AOE và tam giác AOD có:

          AE=AD(tam giác AED cân)

          \(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)

         AO chung

=> tam giác AOE=tam giác AOD(c.g.c)

=> OE=OD=> O là trung điểm của ED(1)

\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)

từ (1) và (2) => AH là trung trực của ED

A B C D E H O

5 tháng 5 2019

a) Xét tam giác ABD và tg ACE có:

                D^ = E^ = 90độ (gt)

                A là góc chung

                AB = AC ( do tam giác ABC cân tại A)

    => tam giác ABD = tam giác ACE (ch-gn)

b) Vì AD = AE ( tg ABD = tg ACE)

        => tg AED cân tại A.

c) Vì AD = AE (cmt)

       => A thuộc đường trung trực của ED.

    Xét tg AEH và tg ADH có:

            E^ = D^ = 90độ (gt) 

            AD = AE (cmt)

            AH cạnh huyền chung.

       => tg AEH = tg ADH (ch-cgv)

       => HE = HD.

       => H thuộc đường trung trực của ED.

       => AH là đường trung trực của  ED.

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0