K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

A B C M 1 2

a) Xét tam giác AMB và AMC có:

AM chung 

AB=AC (tam giác ABC cân tại A)

\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)

b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC

Vì trong tam giác cân đường trung tuyến trùng với đường cao

=> AM là đường cao tam giác ABC 

=> AM _|_ BC (đpcm)

Bài làm

a) Xét tam giác AMB và tam giác AMC có:

^MAB = ^MAC ( Do AM phân giác )

AB = AC ( Do ∆ABC cân )

^B = ^C ( Do ∆ABC cân )

=> ∆AMB = ∆AMC ( g.c.g )

b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )

=> ^AMB = ^AMC 

Mà ^AMB + ^AMC = 180° ( hai góc kề bù )

=> ^AMB = ^AMC = 180°/2 = 90°

=. AM vuông góc với BC.

Cách 2: Vì tam giác ABC cân tại A

Mà AM là tia phân giác

=> AM đồng thời là đường cao.

=> AM vuông góc với BC .

c) Vì ∆ABC cân tại A

Mà AM vừa là đường phân giác, vừa là đường cao.

=> AM là đường trung tuyến. 

=> BM = MC 

Mà BM + MC = BC = 6

=> BM = MC = 6/2 = 3 ( cm )

Xét tam giác AMB vuông tại M có:

Theo định lí Pytago có:

AB² = AM² + BM²

=> AM² = AB² - BM²

Hay AM² = 5² - 3²

=> AM² = 25 - 9

=> AM² = 16

=> AM = 4 ( cm )

d) Xét tam giác ABC có:

AM vuông góc với BC

AH vuông góc với AC

Mà AM cắt AH tại H

=> H là trực tâm.

=> CH vuông góc với AB . ( Đpcm )

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
7 tháng 12 2015

len google

 

10 tháng 11 2016

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

30 tháng 12 2018

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

9 tháng 12 2022

A)Xét tam giác AMB và tam giác ABC có

BM=MC (gt)

AB=AC (gt)

AM là cạnh chung

Vậy tam giác AMB =tam giác MAC(c.c.c)

Vì tam giác AMB = tam giác AMC 

Suy ra góc AMB=góc AMC

TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)

Suy ra góc AMB= góc AMC=90 độ

Suy ra Am vuông góc với BC

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn