K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

xét tg AIB và tg AIC có:
AI chung 
C = B ( tg ABC cân tại A )
AB = AC ( tg ABC cân tại A )
suy ra tg AIB = tg AIC ( c.g.c )
=> BI = CI ( 2 cạnh tương ứng )
hay AI là trung trực của BC

20 tháng 4 2020

Giúp tôi với 

29 tháng 3 2016

a, Ta có: Tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB

=> 1/2 góc ABC = 1/2 góc ACB

=> góc IBC = góc ICB

=> Tam giác BIC cân tại I

b, Gọi M là giao điểm của AI với BC

Ta có tam giác BIC cân (câu a)

=> IB = IC ( cặp góc tương ứng )

Xét tam giác ABI và tam giác ACI:

AB = AC (gt)

góc ABI = góc ACI (c.m trên )

IB = IC (c.m trên )

=> Tam giác ABI = tam giác ACI (c.g.c)

=>góc BAI = góc CAI ( cặp góc tương ứng )

Xét tam giác BAM và tam giác CAM

góc BAI = góc CAI (c.m trên)

AB = AC (gt)

góc ABC = góc ACB (gt)

=> tam giác BAM = tam giác CAM (g.c.g)

=>BM = CM (cặp cạnh tương ứng) (1)

=>góc AMB = góc AMC (cặp góc tương ứng )

mà góc AMB + góc AMC = 180o (kề bù)

=> góc AMB = góc AMC = 180o / 2 = 90o (2)

Từ (1)(2) => AI trung trực BC

a: Xét ΔACE vuông tại C và ΔADE vuông tại D có

AE chung

AC=AD

Do đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là tia phân giác của \(\widehat{CAB}\)

b: Ta có: ΔACE=ΔADE

nên EC=ED

Ta có: AC=AD

nên A nằm trên đường trung trực của CD(1)

Ta có: EC=ED

nên E nằm trên đường trung trực của CD(2)

Từ (1) và (2) suy ra AE là đường trung trực của CD