K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

a) Gọi Q là giao điểm của HD và FE

Xét tam giác FHD ta có:

FQ là đcao(D đối xứng với H qua FE)

FQ là đg trung tuyến HD(D đối xứng với H qua FE;Q là giao điểm của HD và FE)

=> tam giác FHD cân tại F

Ta có:

\(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)

\(\widehat{ABC}=\widehat{FDB}\) (2 góc đồng vị và FD//AC)

=> \(\widehat{ACB}=\widehat{FDB}\)

=> tam giác FBD cân tại F

=> FB=FD

Mà FH=FD(tam giác FHD cân tại F)

Nên FB=FH

=> tam giác BHF cân tại F

7 tháng 1 2018

cho mk cái hình đi bạn mk k vẽ đc hình

18 tháng 11 2022

a: Xét ΔBNQ có

C là trung điểm của BQ

CA//NQ

Do đó: A là trung điểm của NB

Xét ΔCPM có

B là trung điểm của CP

CA//MP

DO đó: A là trung điểm của CM

Xét tứ giác BMNC có

A là trung điểm chung của BN và MC

nên BMNC là hình bình hành

b: Để ANKM là hình bình hành

nên AM//KN và AN//KM

=>AB//MK và AB=MK

=>ABMK là hình bình hành

=>AI//BM

Xét ΔCBM có

A là trung điểm của CA

AI//BM

DO đó; I là trung điểm của BC

 

24 tháng 11 2024

Không biết

 

5 tháng 11 2017

a)  gócm=gócb =gócc=gócn mn // bc

b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf 

c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn

24 tháng 11 2024

Khong biết

 

19 tháng 8 2017


a) Phần thuận :

Theo đề bài MD // AC, ME // AB (gt) nên tứ giác ADME là hình bình hành.

Do I là trung điểm của DE (gt), do đó I là trung điểm của AM.

Kẻ ,  thì IK // AH.

Trong tam giác MAH, IK là đường trung bình nên IK = AH.

Vì 

...chịu

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

22 tháng 10 2023

a: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)

Xét tứ giác APMQ có

AP//MQ

AQ//MP

Do đó: APMQ là hình bình hành

Hình bình hành APMQ có AM là phân giác của góc PAQ

nên APMQ là hình thoi

b: Xét ΔABC có

M là trung điểm của BC

MP//AC

Do đó: P là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MQ//AB

Do đó: Q là trung điểm của AC

Xét ΔABC có

P,Q lần lượt là trung điểm của AB,AC

=>PQ là đường trung bình của ΔABC

=>PQ//BC

c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA

=>MQ là đường trung bình của ΔABC

=>MQ//AB và \(MQ=\dfrac{AB}{2}\)

mà \(MQ=\dfrac{MD}{2}\)

nên MD=AB

MQ//AB

=>MD//AB

Xét tứ giác ABMD có

AB//MD

AB=MD

Do đó: ABMD là hình bình hành

d: Xét tứ giác AMCD có

Q là trung điểm chung của AC và MD

Do đó: AMCD là hình bình hành

Hình bình hành AMCD có \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD

=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)

22 tháng 10 2023

Sao MQ= MD/2 ạ?