Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
A = 100* => B^ = C^ = 40*
trên CA lấy điểm E sao cho CB = CE
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20*
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10*
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70*
=>MEB^ = 60* (1)
ΔCBM = Δ CEM => MB = ME (2)
(1) và (2) => BME là tam giác đều MB = BE (1*)
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30*
ABE^ = CBE^ - ABC^ = 70* - 40* = 30*
=> ABM^ = ABE^ (2*)
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung)
=> AMB^ = AEB^ = 70*
a,Xét tam giác ADE va tam giác ACB :
Có:AE/AB=3/9=1/3
 góc chung
AD/AC=4/12=1/3
=>tg ADE đồng dạng tg ACB(cgc)
=>AD/AC=AE/AB
b, Vì tg ADE đồng dạng tg ACB(cmt)
=> AD/AC=AE/AB=DE/CB
Mà:AD/AC=AE/AB=1/3
=>DE/CB=1/3
A B C E M
Cm: a) Xét t/giác AMB và t/giác CME
có: AM = MC (gt)
BM = ME (gt)
\(\widehat{AMB}=\widehat{CME}\)(đối đỉnh)
=> t/giác AMB = t/giác CME (c.g.c)
b) Ta có: AB < BC (cgv < ch)
Mà AB = CE (vì t/giác AMB = t/giác CME)
=> CE < BC
c) Ta có: CE < BC (cmt)
=> \(\widehat{MBC}< \widehat{MEC}\) (quan hệ giữa góc và cạnh đối diện)
Mà \(\widehat{MEC}=\widehat{ABM}\) (vì t/giác AMB = t/giác CME)
=> \(\widehat{ABM}>\widehat{MBC}\)
d) Xét t/giác AME và t/giác CMB
có: AM = MC (gt)
ME = MB (gt)
\(\widehat{AME}=\widehat{CMB}\)(đối đỉnh)
=> t/giác AME = t/giác CMB (c.g.c)
=> \(\widehat{CBM}=\widehat{MEA}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AE // BC (Đpcm)
giúp mik với