Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : ΔABC có AB = AC
⇒ ΔABC là tam giác cân
⇒ ∠B = ∠C = 180 - ∠A/2
Xét ΔADC và ΔAEB có :
DC = BE ( DB+BC = EC+CB )
∠ACD = ∠ABE ( chứng minh trên )
AC = AB
⇒ ΔADC = ΔAEB (c.g.c)
⇒ AD = AE ( 2 cạnh tương ứng )
b, Ta có : ∠ABD + ∠ABC = 180 ( 2 góc kề bù )
∠ACB + ∠ACE = 180 ( 2 góc kề bù )
Mà ∠ABC = ∠ACB
⇒ ∠ABD = ∠ACE
Xét ΔABD và ΔACE có :
AB = AD
∠ABD = ∠ACE
BD = CE
⇒ ΔABD = ΔACE (c.g.c)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Hình vẽ:
A B C D E
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
tam giác ABC cân tại A-->góc ABC=góc ACB (đ/lí tam giác cân)
góc ACE+góc ACB=180 độ (kề bù)
góc ABD+góc ABC=180 độ (kề bù)
mà góc ABC=góc ACB (cmt)
-->góc ACE=góc ABD (bắc cầu)
xét tam giác ABD và tam giác ACE có:
+AB=AC(gt)
+BD=CE(gt)
+góc ABD=góc ACE(cmt)
vậy tam giác ABD=tam giác ACE(cgc)
suy ra AD=AE
AD=AE(cmt)-->tam giác ADE cân tại A
thank you!Thanks for ticking me! I didn't expect I was right, I also think you will tick later like everyone else! I didn't expect you to tick early>))
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
theo đầu bài ta có góc abc=góc acb
mà góc ABD+ABC =180(kề bù)
góc ACE+ACB =180 (kề bù)
suy ra góc ABD =ACE
xét tam giác ABD và tam giác ACE
AB=AC(gt)
góc ABD=ACE
BD=CE(gt)
Do đó tam giác ABD=tam giác ACE (c.g.c)
nên AD=AE (2 cạnh tương ứng)
suy ra tam giác ADE cân