K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE

 

15 tháng 8 2016

undefined

a) Xét tam giác BID và tam giác CIE có:
BI=CI ( vì I là trung điểm của cạnh BC)

góc I1=góc I2 (2 góc đối đỉnh)

ID=IE ( I là trung điểm của canh DE)

=> tam giác BID=tam giác CIE (c.g.c)

=> BD=CE (đpcm)

b) Theo câu a) tam giác BID=tam giác CIE

=> góc B=góc C2

Lại có : góc B=góc C1 (gt)

=> góc C1=góc C2 hay CB là tia phân giác của góc ACE

 

 

15 tháng 8 2016
  • - Giải:
  • a)
  • Xét tam giác DIB và tam giác CIE có:
  • Góc DIB = Góc CIE ( 2 góc đối đỉnh )
  • BI = IC (Gỉa thiết )
  • DI = IE( Gỉa thiết )
  • => Vậy tam giác DIB = tam giác CIE 
  •                          ( c . g . c )
  • => BD = CE ( 2 cạnh tương ứng ) 
  • Câu b)
  • Theo câu a), Tam giác DIB = Tam giác CIE 
  • => Góc DBI = Góc ICE ( 2 góc tương ứng )
  • Mà góc ACB = góc ABC
  • => Góc ACB = Góc ICE
  • => CB là tia phân giác của góc ACE
26 tháng 12 2017

B A C D E H

*Xét ΔABE và ΔACD có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AE=AD\left(gt\right)\\\widehat{A}.g\text{óc}.chung\end{matrix}\right.\)

⇒ ΔABE = ΔCAD (c - g - c)

⇒ BE = CD (hai cạnh tương ứng)

8 tháng 5 2017

A B C D E M 1 2 2 1 1 2

b) Xét hai tam giác ABE và ACD có:

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A}\): góc chung

AD = AE (gt)

Vậy: \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)

Suy ra: BE = CD (hai cạnh tương ứng)

c) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^o\)

\(\widehat{E_1}+\widehat{E_2}=180^o\)

\(\widehat{D_1}=\widehat{E_1}\) (\(\Delta ABE=\Delta ACD\))

\(\Rightarrow\) \(\widehat{D_2}=\widehat{E_2}\)

Ta lại có: BD = AB - AD

CE = AC - AE

Mà AB = AC (do \(\Delta ABC\) cân tại A)

AD = AE (gt)

\(\Rightarrow\) BD = CE

Xét hai tam giác BDM và CEM có:

\(\widehat{ABE}=\widehat{ACD}\) (\(\Delta ABE=\Delta ACD\))

BD = CE (cmt)

\(\widehat{D_2}=\widehat{E_2}\) (cmt)

Vậy: \(\Delta BDM=\Delta CEM\left(g-c-g\right)\)

d) Xét hai tam giác ABM và ACM có:

AB = AC (do \(\Delta ABC\) cân tại A)

MB = MC (\(\Delta BDM=\Delta CEM\))

AM: cạnh chung

Vậy: \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)

Suy ra: \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)

Do đó: AM là tia phân giác của \(\widehat{BAC}\) (đpcm).

7 tháng 5 2017

Cho mk hỏi M là giao điểm của BE và CD hay của BD và CD vậy?

22 tháng 4 2019

a,Tam giác ABC cân tại A=> AB=AC

=> AD=BD=AE=EC

b,Xét tam giác ADG và tam giác BDK

 GD=DK

ADG=BDK (đối đỉnh)

AD=DB (gt) 

=> tam giác ADG=tam giác BDK

=>GAD=DBK

=> AG // BK(so le trong)