Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}\) Tam giác \(\text{ABC}\) cân tại \(\text{A}\) nên\(\text{ ABC = ACB}\) (t/c tam giác cân)
\(\Rightarrow\) \(\dfrac{\text{ABC}}{\text{2}}\) \(\text{=}\) \(\dfrac{\text{ACB}}{\text{2}}\)
Mà \(\text{ABD = CBD =}\) \(\dfrac{\text{ABC}}{\text{2}}\)
\(\text{ACE = BCE = }\dfrac{\text{ACB}}{\text{2}}\)
Nên \(\text{ABD = CBD = ACE = BCE}\)
Xét \(\Delta\text{EBC}\) và \(\Delta\text{DCB}\) có
\(\widehat{\text{EBC}}=\widehat{\text{DCB}}\text{(cmt)}\)
\(\text{BC}\) chung
\(\widehat{\text{ECB}}=\widehat{\text{DBC }}\text{(cmt)}\)
\(\Rightarrow\Delta\text{EBC}=\Delta\text{DCB}\text{(g.c.g)}\)
\(\text{⇒}\) \(\text{BE = CD}\) (\(\text{2}\) cạnh tương ứng)
Mà \(\text{AB = AC (gt)}\) nên \(\text{AB - BE = AC - CD}\)
\(\text{⇒}\) \(\text{AE = AD}\)
\(\text{⇒}\) \(\Delta\text{AED}\) cân tại \(\text{A}\) \(\text{(đpcm)}\)
\(\text{b)}\) \(\Delta\text{ABC}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{BAC}}\) \(\text{= 180}^{\text{o}}\) \(\text{- 2.ABC (1)}\)
\(\Delta\text{EAD}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{EAD}}\) \(\text{= 180}^{\text{o}}\)\(\text{- 2.AED (2)}\)
Từ \(\text{(1)}\) và \(\text{(2)}\) \(\text{⇒}\) góc \(\text{ABC = AED}\)
Mà \(\widehat{\text{ABC}}\) và \(\widehat{\text{AED}}\) là \(\text{2}\) góc ở vị trí đồng vị nên \(\text{ED // BC (đpcm)}\)
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Ta có CE là tia phân giác của ACB
=> góc ACE= góc BCE
=> cung AE= cung BE
Ta có BD là tia phân giác góc ABC
=> góc ABD= góc DBC
=> cung AD= cung DC
Ta có góc AMN=( cung AD+ EB)
góc ANM=( cung DC+ AE)
mak cung AE= cung BE và cung AD= cung DC
=> góc AMN= góc ANM=> tam giác AMN cân
Ta có BD là đường phân giác thứ 1 (gt)
CE là đường phân giác thứ 2(gt)
mak BD giao CE tại I
=> I là trọng tâm
=> AI là đường phân giác thứ 3
=> góc BAI= góc IAC
Ta có góc IAD= góc IAC+góc CAD
mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )
=>góc IAD=góc BAI+góc ABI(1)
Ta cso góc AID là góc ngoài của tam giác ABI
=> góc AID= góc BAI+góc ABI(2)
từ (1) và (2) =>góc IAD= góc AID
=> tam giác AID cân
Tớ làm lại nha cái kia bị lỗi với lại là cậu tự vẽ hình nha tớ vẽ hình gửi vào đây nó bị lỗi k hiện á
Ta có CE là tia phân giác của ACB
=> góc ACE= góc BCE
=> cung AE= cung BE
Ta có BD là tia phân giác góc ABC
=> góc ABD= góc DBC
=> cung AD= cung DC
Ta có góc AMN=\(\dfrac{1}{2}\)( cung AD+ EB)
góc ANM=\(\dfrac{1}{2}\)( cung DC+ AE)
mak cung AE= cung BE và cung AD= cung DC
=> góc AMN= góc ANM=> tam giác AMN cân
Ta có BD là đường phân giác thứ 1 (gt)
CE là đường phân giác thứ 2(gt)
mak BD giao CE tại I
=> I là trọng tâm
=> AI là đường phân giác thứ 3
=> góc BAI= góc IAC
Ta có góc IAD= góc IAC+góc CAD
mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )
=>góc IAD=góc BAI+góc ABI(1)
Ta cso góc AID là góc ngoài của tam giác ABI
=> góc AID= góc BAI+góc ABI(2)
từ (1) và (2) =>góc IAD= góc AID
=> tam giác AID cân
a: Xét ΔADB và ΔAEC có
góc A chung
AB=AC
góc ABD=góc ACE
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
Xét tứ giác BEDC có
DE//BC
BD=CE
=>BEDC là hình thang cân
=>EB=DC=ED
c: Xét ΔOBC có góc OBC=góc OCB
nên ΔOBC cân tại O
=>OB=OC
OB+OD=BD
OC+OE=CE
mà OB=OC và BD=CE
nên OD=OE
=>ΔODE cân tạiO