Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D 1 2 2 1 1 2 z x y
a, Do DE//BC
=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )
Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC
=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)
Do \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )
\(\Rightarrow\widehat{A_2}=\widehat{ACB}\)
Mà góc ABC = góc ACB ( tam giác ABC cân ở A )
=> \(\widehat{A_1}=\widehat{A_2}\)
=> Ax là tia phân giác góc BAz
Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC
b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)
Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)
\(\Rightarrow\widehat{A_1}=\widehat{CAE}\)
\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Vì góc ABC = góc ACB ( tam giác ABC cân )
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác DAC và tam giác EAB có:
\(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )
AC = AB ( tam giác ABC cân )
\(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )
=> \(\Delta DAC=\Delta EAB\)( g-c-g )
=> DA = EA
Vẽ tia AG là tia đối của tia AC
Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)
\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{BAF}=\widehat{GAF}\)
hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)
a) Ta có : tam giác ABC vuông tại A
=> góc B + góc C = 90\(^o\)
Mà góc B = 53\(^o\)
=> góc C = góc A - góc B
=> góc C = 90\(^o\)- 53\(^o\)
=> góc C = 37\(^o\)
b) Xét tam giác BEA và tam giác BED có :
BD = BA (gt)
BE là cạnh chung
góc ABE = góc DBE ( BE là tia p/giác của góc B)
=> tam giác BEA = tam giác BED
c) Ta có CH vuông góc với BE
=> Tam giác BHC và tam giác BHF là tam giác vuông
Xét tam giác vuông BHF và tam giác vuông BHC có:
BH là cạnh chung
góc FBH = góc HBC ( BE là tia p/giác của góc B)
=> tam giác vuông BHF = tam giác vuông BHC ( cạnh góc vuông + góc nhọn )
=> BF = BC ( 2 cạnh tương ứng ) (*)
d) Xét tam giác BEF và tam giác BEC có :
BF = BC ( theo (*))
góc FBE = góc CBE ( BE là tia p/giác của góc B)
BE là cạnh chung
=> tam giác BEF = tam giác BEC (c . g . c )
=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)
Xét tam giác BAC và tam giác BDF có :
góc BFD = góc BCA ( theo (**))
góc B là góc chung
BA = BD (gt)
=> tam giác BAC = tam giác BDF ( g . c . g )
=> góc FDB = góc CAB ( 2 góc tương ứng )
Xét tam giác BED có : góc EBD + góc BED + góc BDE = 180\(^o\)
Mà :góc FDB = góc CAB = 90\(^o\)
góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)
=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))
=> góc BED = 180\(^o\)- 116,5\(^o\)
=> góc BED = 63,5\(^o\)
Mặt khác : Tam giác BED = tam giác BEA
=> góc AEB = BED = 63,5\(^o\)
Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)
Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)
=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))
=> FEA = 180\(^o\)- 127\(^o\)
=> FEA = 53\(^o\)
Lại có : góc FAD = góc FEA + góc AEB + góc BED
=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)
=> FAD = 180\(^o\)
=> D, F, E thẳng hàng
ủa sao tự nhiên cho tam giác ABC mà lại cân tại E????? Xem lại đề đi bạn!