K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

A B C E D 1 2 2 1 1 2 z x y

a, Do DE//BC

=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )

   Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC

=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)

 \(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)

Do  \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )

 \(\Rightarrow\widehat{A_2}=\widehat{ACB}\)

  Mà góc ABC = góc ACB ( tam giác ABC cân ở A )

=> \(\widehat{A_1}=\widehat{A_2}\)

 => Ax là tia phân giác góc BAz

Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC

b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)

Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)

 \(\Rightarrow\widehat{A_1}=\widehat{CAE}\)

\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)

\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)

      Vì góc ABC = góc ACB ( tam giác ABC cân )

=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)

                Xét tam giác DAC và tam giác EAB có:

                                   \(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )

                                       AC = AB  ( tam giác ABC cân )

                                  \(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )

=> \(\Delta DAC=\Delta EAB\)( g-c-g )

=> DA = EA

Vẽ tia AG là tia đối của tia AC

Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)

\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{BAF}=\widehat{GAF}\)

hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)

29 tháng 1 2016

a) Ta có : tam giác ABC vuông tại A 

=> góc B + góc C = 90\(^o\)

Mà góc B = 53\(^o\)

=> góc C = góc A - góc B 

=> góc C = 90\(^o\)- 53\(^o\)

=> góc C = 37\(^o\)

b) Xét tam giác BEA và  tam giác BED có :

BD = BA (gt)

BE là cạnh chung

góc ABE = góc DBE ( BE là tia p/giác của góc B)

=>  tam giác BEA =  tam giác BED

c) Ta có CH vuông góc với BE 

=> Tam giác BHC và  tam giác BHF là  tam giác vuông

Xét  tam giác vuông BHF và  tam giác vuông BHC có:

BH là cạnh chung 

góc FBH = góc HBC ( BE là tia p/giác của góc B)

=>  tam giác vuông BHF =  tam giác vuông BHC ( cạnh góc vuông + góc nhọn )

=> BF = BC ( 2 cạnh tương ứng ) (*)

d) Xét tam giác BEF và tam giác BEC có :

BF = BC ( theo (*))

góc FBE = góc CBE ( BE là tia p/giác của góc B)

BE là cạnh chung

=>  tam giác BEF = tam giác BEC (c . g . c )

=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)

Xét  tam giác BAC và  tam giác BDF có :

góc BFD = góc BCA ( theo (**))

góc B là góc chung

BA = BD (gt)

=> tam giác BAC =  tam giác BDF ( g . c . g )

=> góc FDB = góc CAB ( 2 góc tương ứng )

Xét tam giác BED có : góc EBD +  góc BED +  góc BDE = 180\(^o\)

Mà :góc FDB = góc CAB = 90\(^o\)

góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)

=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))

=> góc BED = 180\(^o\)- 116,5\(^o\)

=> góc BED = 63,5\(^o\)

Mặt khác : Tam giác BED = tam giác BEA 

=> góc AEB = BED = 63,5\(^o\)

Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)

Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)

=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))

=> FEA = 180\(^o\)- 127\(^o\)

=> FEA = 53\(^o\)

Lại có : góc FAD = góc FEA + góc AEB + góc BED 

=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)

=> FAD = 180\(^o\)

=> D, F, E thẳng hàng