K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
B C A F K D E M
a)Vì \(\Delta ABC\)cân tại A (gt) \(\Rightarrow\hept{\begin{cases}\widehat{B}=\widehat{C}\left(1\right)\\AB=AC\left(4\right)\end{cases}}\)
Vì DE // BC (gt) \(\Rightarrow\hept{\begin{cases}\widehat{ADE}=\widehat{DBC}\left(2\right)\\\widehat{AED}=\widehat{ECB}\left(3\right)\end{cases}}\)
Từ \(\left(1\right),\left(2\right)\left(3\right)\Rightarrow\widehat{ADE}=\widehat{AED}\)
\(\Delta AED\)có:
\(\widehat{ADE}=\widehat{AED}\left(cmt\right)\)
\(\Rightarrow\Delta AED\)cân tại A (tính chất)
=> AE =AD (định nghĩa) (5)
Từ (4),(5) => BD =CE (6)
Vì DE // BC (gt)\(\Rightarrow\widehat{EDC}=\widehat{DCB}\)(2 góc so le trong)
mà \(\widehat{DCB}=\widehat{DCE}\)(CD là phân giác của \(\widehat{ACB}\))
\(\Rightarrow\widehat{EDC}=\widehat{DCE}\)
\(\Delta EDC\)có:
\(\widehat{EDC}=\widehat{DCE}\left(cmt\right)\left(9\right)\)
\(\Rightarrow\Delta EDC\)cân tại E (tính chất)
=> ED = EC (định nghĩa) (7)
Từ (6), (7) => BD = DE (15)
Lấy K thuốc tia đối của tia DF
Ta có: \(\widehat{KDC}=90^o\Rightarrow\widehat{EDC}+\widehat{DCK}=90^o\left(8\right)\)
\(\Delta KDC\)có:
\(\widehat{KDC}=90^o\)
\(\Rightarrow\widehat{DKC}+\widehat{DCK}=90^o\)(tổng 3 góc trong 1 tam giác, áp dụng vào tam giác vuông) (10)
Từ (8), (9), (10) => \(\widehat{DKC}=\widehat{KDE}\)
\(\Delta EDK\)có:
\(\widehat{EDK}=\widehat{EKD}\left(cmt\right)\)
\(\Rightarrow\Delta EDK\)cân tại E (tính chất)
=> ED =EK (định nghĩa) (11)
Từ (7),(11) => ED = EC = EK
Ta có: CK = EC + EK
mà ED = EC = EK (cmt)
=> CK= ED + ED
=> CK =2.ED (12)
\(\Delta CDK\)và \(\Delta CDF\)có:
\(\widehat{DCK}=\widehat{CDF}\)
chung cạnh CD
\(\widehat{CDK}=\widehat{CDF}\left(=90^o\right)\)
\(\Rightarrow\Delta CDK=\Delta CDF\)(góc nhọn - cạnh góc vuông)
=> CK = CF(2 cạnh tương ứng) (13)
Từ (12),(13) => CF = 2.ED (14)
Từ (14),(15) => CF = 2.BD
b) \(\Delta AMD\)và \(\Delta AME\)có:
AD = AE (câu a)
\(\widehat{MAD}=\widehat{MAE}\left(gt\right)\)
chung AM
\(\Rightarrow\Delta AMD=\Delta AME\left(c.g.c\right)\)
=> MD = ME (2 cạnh tương ứng)
Ta có: ED = MD + ME
mà MD = ME (cmt)
=> ED = MD + MD
=> ED = 2.MD
=> 2.ED = 2.2MD
=>2.ED = 4.MD (16)
Từ (14),(16) => CF = 4.MD
Ai bảo bài làm của mik sai thì hãy nhìn kĩ lại đi nha !
Bài này, t chắc chắn đúng 100% lun đó