Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.
Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.
Suy ra AD là đường kính của (O).
Ta có: AH ⊥ BC ⇒ HB = HC = BC/2 = 24/2 = 12(cm)
Áp dụng định lí Pitago vào tam giác vuông ACH ta có:
A C 2 = A H 2 + H C 2
Suy ra: A H 2 = A C 2 - H C 2 = 20 2 - 12 2 = 400 - 144 = 256
AH = 16 (cm)
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
A C 2 = AH.AD ⇒ AD = A C 2 /AH = 20 2 /16 = 25 (cm)
Vậy bán kính của đường tròn (O) là: R = AD/2 = 25/2 = 12,5 (cm)
H B C O A
a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).
b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o
c, Ta có BH = HC = BC/2 = 12(cm)
Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256
=> AH = 16(cm)
AC2 = AD. AH
AD = AC2/AH = 25(cm)
Bán kính đường tròn(O) bằng 12,5cm.
a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).
b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o
c, Ta có BH = HC = BC/2 = 12(cm)
Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256
=> AH = 16(cm)
AC2 = AD. AH
AD = AC2/AH = 25(cm)
Bán kính 25 cm
Cái này thì giống trong sách giải rồi. Với lại câu a phải dùng ngôn ngữ toán học để làm chứ trình bày văn xuôi như vậy là dài dòng lắm.
a: AM là phân giác của góc BAC
=>BM=CM
mà OB=OC
nên OM là trung trực của BC
=>OM vuông góc BC
b: Xét ΔHBA vuông tại H và ΔCDA vuông tại C có
góc HBA=góc CDA
=>ΔHBA đồng dạng với ΔCDA
=>góc BAH=góc DAC
=>góc IAM=góc DAM
=>AM là phân giác của góc IAD
c: AM là phân giác của góc IAD
nên sđ cung IM=sđ cung MD
=>IM=MD
=>OM là trung trực của ID
=>OM vuông góc ID
=>ID//BC