K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

+) Ta có: ^ACD = ^ACB + ^BCD; ^AEC = ^ABC + ^BAD

Mà ^ACB = ^ABC (∆ABC cân tại A); ^BCD = ^BAD (hai góc nội tiếp cùng chắn một cung)

nên ^ACD = ^AEC (1)

+) Dễ có: ∆AEB ~ ∆CED (g.g) nên \(\frac{AB}{CD}=\frac{AE}{CE}=\frac{AC}{CD}\)(2)

Từ (1) và (2), ta có: ^ACD = ^AEC và \(\frac{AE}{CE}=\frac{AC}{CD}\)nên ∆AEC ~ ACD (c.g.c)

\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AC}\Rightarrow AC^2=AE.AD\)(đpcm)

22 tháng 2 2021

vì AB =AC => sđ cung AB = sđ cung AC 

=> 1/2 ( sđ CD + sđ AB ) =1/2 ( sđ CD + sđ AC ) 

=> AEB = 1/2 sđ AD =ABD 

CM tam giác ABD ~ tam giác AEB ( g-g) => AC^2 = AD.AE 

22 tháng 1 2021

giúp mình với

 

Bạn xem lại đề, AD đâu có bằng AB đâu mà góc AEB= góc ABD