Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Xét \(\Delta ABC\) cân tại A:
AM là đường trung tuyến (M là trung điểm của cạnh đáy BC).
\(\Rightarrow\) AM là đường cao (Tính chất tam giác cân).
\(\Rightarrow AM\perp BC.\Rightarrow\widehat{AMC}=90^o.\)
Xét \(\Delta AMC\) và \(\Delta MNC:\)
\(\widehat{AMC}=\widehat{MNC}\left(=90^o\right).\\ \widehat{ACM}chung.\)
\(\Rightarrow\Delta AMC\sim\Delta MNC\left(g-g\right).\)
2/ \(\Delta AMC\sim\Delta MNC\left(cmt\right).\)
\(\Rightarrow\dfrac{AM}{MN}=\dfrac{MC}{NC}\) (2 cạnh tương ứng).
\(\Rightarrow AM.NC=MN.MC.\)
Ta có: \(MN=2OM\) (O là trung điểm của MN).
\(MC=\dfrac{1}{2}BC\) (M là trung điểm của BC).
\(\Rightarrow AM.NC=2OM.\dfrac{1}{2}BC.\)
\(\Rightarrow AM.NC=OM.BC.\)
Bài 1:
Gọi N là trung điểm của HC
Xét tam giác ABC cân tại A ta có:
AM là đường trung tuyến (gt)
=> AM là đường cao của tam giác ABC
=> AM _|_ BC tại M
Xét tam giác HMC ta có:
O là trung điểm của Mh (gt)
N là trung điểm của HC ( cách vẽ)
=> ON là đường trung bình của tam giác HMC
=> ON // MC
Mà AM _|_ MC tại M (cmt)
Nên NO _|_ AM
Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)
=> O là trực tâm của tam giác AMN
=> AO _|_ MN
Xét tam giác BHC ta có:
M là trung điểm của BC (gt)
N là trung điểm của HC (cách vẽ)
=> MN là đường trung bình của tam giác BHC
=> MN // BH
Mà AO _|_ MN (cmt)
Nên AO _|_ BH (đpcm)
LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws