Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
C O B A N M
a) Ta có:
Góc NOC = 180 độ - góc MON - góc MOB
Góc NOC = 180 độ - góc MBO - góc MOB
Góc NOC = góc BMO
Xét tam giác MBO và tam giác OCN
Góc MBO = góc OCN = 60 độ
Góc BMO = góc NOC
=> Tam giác MBO ~ tam giác OCN (g-g)
=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)
b) Do O là trung điểm BC => OC = BO
\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)
\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)
\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)
Xét tam giác OBM và tam giác NOM
Góc OBM = góc NOM = 60 độ
\(\frac{MB}{MO}=\frac{OB}{NO}\)
=> Tam giác OBM ~ tam giác NOM (c-g-c)
=> Góc OMB = góc OMN
=> MO là tia phân giác góc BMN
A B C M D E
a) Ta có : Góc MDB = góc CME (gt) ; Góc B = góc C (tam giác ABC cân tại A)
=> \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\) hay \(\frac{BM}{CE}=\frac{BD}{BM}\) ( M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) Ta có : Góc BMD = góc MEC (tam giác DBM và MCE đồng dạng)
Mà BME là góc ngoài tam giác MEC => góc BMD + góc DME = góc MEC + góc MCE = góc BMD + góc MCE
=> Góc DME = góc MCE = góc MBA (1)
Từ \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\) hay \(\frac{DM}{ME}=\frac{MC}{CE}\) (2)
Từ (1) và (2) suy ra \(\Delta DME~\Delta MCE\left(c.g.c\right)\) mà \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\Delta DBM~\Delta DME\)
Vậy ta có điều phải chứng minh.