K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Bạn này cần sử dụng tính chất đường trung bình ák bạn. Đầu tiên bạn vẽ hình ra.

Ta sẽ CM 2 tam giác ABM = tam giác CMD. Bạn tự chứng mình nhé, tại nó đơn giản!!

=> CD // AB.(1)

Tam giác ABE có : CA =CE    CI//AB

=> CI là đường trung bình => I cũng là trung điểm BE 

20 tháng 4 2016

sao lai hỏi câu hỏi của ffffffffg

4 tháng 5 2019

a)Sao lại chứng minh  tam giác ACD= tam giác DMA 

Mà tam giác DMC<ADC(xem lại)

b)Xét tam giác DMC và tam giác BMA

       MB=MD(gt)

       DMC=AMB(đđ)

       MA=MC(Vì M là trung điểm AC)

⇒⇒tam giác DMC=tam giác BMA(c.g.c)

⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

4 tháng 5 2019

A B C M D E

a) Xét tam giác BMC và tam giác DMA có:

    \(\hept{\begin{cases}\widehat{AMD}=\widehat{BMC}\left(2gocdoidinh\right)\\AM=MC\left(gt\right)\\BM=DM\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta BMC=\Delta DMA\left(c-g-c\right)\)

\(\Rightarrow\widehat{MAD}=\widehat{MCB}\)( 2 góc t. ung )

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AD//BC\)

20 tháng 4 2016

Bạn tự vẽ hình nha!

Vì M là trung điểm của AC => CM = 1/2 AC; mà AC = CE (giả thiết) => CM= 1/2CE  => CM = 1/3EM(1)

Lại có MD =MB (giả thiết) => M là trung điểm của BD => E M là trung tuyến(2)

Từ (1) và (2) => C là trọng tâm của tam giác BDE => DC qua trung điểm I của BE (ĐPCM)

18 tháng 5 2016

a) 

a)Sao lại chứng minh  tam giác ACD= tam giác DMA 

Mà tam giác DMC<ADC(xem lại)

b)Xét tam giác DMC và tam giác BMA

       MB=MD(gt)

       DMC=AMB(đđ)

       MA=MC(Vì M là trung điểm AC)

⇒⇒tam giác DMC=tam giác BMA(c.g.c)

⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE

18 tháng 5 2016

       MA=MC(Vì M là trung điểm AC)

$⇒⇒$⇒⇒tam giác DMC=tam giác BMA(c.g.c)

$⇒⇒$⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE