Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Sửa đề: BM=CN
Xét (O) có
OB là bán kính(gt)
O là trung điểm của BC(gt)
Do đó: BC là đường kính của (O)
Xét (O) có
ΔBMC nội tiếp đường tròn(B,M,C∈(O))
BC là đường kính của (O)(cmt)
Do đó: ΔBMC vuông tại M(Định lí)
Xét (O) có
ΔBNC nội tiếp đường tròn(B,N,C∈(O))
BC là đường kính của (O)(cmt)
Do đó: ΔBNC vuông tại N(Định lí)
Xét ΔBMC vuông tại M và ΔCNB vuông tại N có
BC là cạnh chung
\(\widehat{MBC}=\widehat{NCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)
⇒BM=CN(hai cạnh tương ứng)
b) Xét ΔOBM và ΔOCN có
OB=OC(=R)
OM=ON(=R)
BM=CN(cmt)
Do đó: ΔOBM=ΔOCN(c-c-c)
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
A B C I D H kẻ AH,ID vuông góc với BC
do tam giác ABC cân ở A =>góc B= góc C=79'57'19', góc A=28'5'22''
BH=1/2 BC, góc BAH=góc CAH=góc A/2=14'2'41''
ID vuông góc BH,AH vuông góc với BH=>AH//ID, lại có IA=IB
=>BD=DH=>BD=1/2BH=1/4BC =>CD=3/4 BC
do ID//AH=>góc BID=góc BAH=góc A/2=14'2'41''
tg góc BID=BD/ID=>ID=BD/tg BID =BC/4.tg BID
tg BCI=ID/DC=BC/4.tg BID.DC=BC/4.tg BID.3/4 BC =1/3.tg BID=1,332495264
=>góc BCI=53'6'46.11''=>góc ACI=75'57'19''-góc BCI=22'50'32.89''
a: Xét ΔABH vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH\(\sim\)ΔCAB
Suy ra: \(\dfrac{AB}{CA}=\dfrac{HB}{AB}\)
hay \(AB^2=HB\cdot BC\)
b: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC
hay MN\(\perp\)AB
a) Ta có : AC = AB/tanC = 5/tan30o = \(5\sqrt{3}\) (cm)
BC = AB/sinC = 5/sin30o = 10 (cm)
góc B = 90 độ - góc C = 90 độ - 30 độ = 60 độ
b) AM = 1/2AC = \(\frac{1}{2}.5\sqrt{3}=\frac{5\sqrt{3}}{2}\) (cm)
c) Ta tính được : \(MB=\sqrt{AM^2+AB^2}=\sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2+5^2}=\frac{5\sqrt{7}}{2}\) (cm)
\(\Rightarrow BG=\frac{2}{3}BM=\frac{2}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{3}\) (cm)
\(GM=\frac{1}{3}BM=\frac{1}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{6}\left(cm\right)\)
N ở đâu ???
góc MCB=90 độ
Mình hỏi góc cMb mà bạn