K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔDMIΔDMI và ΔENIΔENI ta có:

Dˆ=Eˆ=90oD^=E^=90o

MD=NE

MIDˆ=NIEˆMID^=NIE^(đối đỉnh)

Do đó ΔDMIΔDMI=ΔENIΔENI(cgv-gn)

Vậy MI=NI(hai cạnh tương ứng)

đpcm

b) Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại J.

Ta có: ΔABJ=ΔACJΔABJ=ΔACJ(g-c-g) nên: JB=JC(hai cạnh tương ứng)

Nên J thuộc AL đường trung trực ứng với BC

Mặt khác: từ ΔDMB=ΔENCΔDMB=ΔENC(câu a)

Ta có: BM=CN

BJ=CJ(cmt)

MBJˆ=NCJˆ=90oMBJ^=NCJ^=90o

Nên ΔBMJ=ΔCNJΔBMJ=ΔCNJ(c-g-c)

MJ=NJ hay đường trung trực của MN luôn đi qua điểm J cố định

28 tháng 1 2020

Tham khảo nhé :))

8 tháng 8 2016

Câu c: Chứng minh:
Vẽ AH vuông góc với BC (H thuộc BC), ta có:
- Chứng minh ΔHAB=ΔHACΔHAB=ΔHAC (cạnh huyền - góc nhọn) \Rightarrow ˆHAB=ˆHACHAB^=HAC^ (2 góc tương ứng)
Gọi O là giao điểm của AH với đường vuông góc với MN tại I, ta có:
- Chứng minh ΔABO=ΔACOΔABO=ΔACO (c.g.c) \Rightarrow ˆOBA=ˆOCAOBA^=OCA^ (2 góc tương ứng) (1)
- Chứng minh ΔOIM=ΔOINΔOIM=ΔOIN (c.g.c) \Rightarrow OM=ONOM=ON (2 cạnh tương ứng)
- Chứng minh ΔOBM=ΔOCNΔOBM=ΔOCN (c.c.c) \Rightarrow ˆMBOˆNCOMBO^NCO^ (2 góc tương ứng) (2)
Lại có: N thuộc tia đối AC (gt) nên C thuộc đoạn AN 
\Rightarrow ˆACO+ˆOCN=180oACO^+OCN^=180o (2 góc kề bù) (3)
Từ (1), (2) và (3) suy ra: ˆABO=ˆACO=ˆOCN=90oABO^=ACO^=OCN^=90o
\Rightarrow Điểm O cố định vì OB vuông góc với AB tại B và OC vuông góc với AC tại C (hay OB và OC duy nhất)
Vậy: Đường thằng vuông góc MN tại I cắt tại điểm O cố định khi D thay đổi trên BC

9 tháng 4 2018

vẽ hình đi bạn

21 tháng 3 2019

Họ và tên của ông giống tui thế

21 tháng 3 2019

a, Tam giác ABC có AB=AC (gt)

=> ∆ ABC cân tại A ( tính chất tam giác cân )

       do đó góc B = góc C ( hai góc ở đáy )

  Ta có : góc ABC = góc ECN ( hai góc đối đỉnh )

Xet ∆ vg BDM va ∆ vg CEN co :

      BD=CE ( gt )

       góc ABD = góc ECN ( cùng bằng góc ACB ) 

=> ∆  vuông góc BDM = ∆ vuông góc ECN ( cạnh góc vuông và góc nhọn kề cạnh ấy )

  Do đó DM = EN  ( hai cạnh tương ứng )

b) Ta có: MD vuông góc với BE

              BE vuông góc với EN

=>MD//EN => góc DMI = góc INE(so le trong)

Xét ∆ MDI và ∆ IEN ta có:

MD=EN(vì ∆ MBD = ∆ CEN)

góc MDI = góc IEN(=90 độ)

góc DMI = góc INE(cmt)

=>∆ MDI = ∆ IEN(CGV-GN)

=>IM=IN(ctư)

=>đường thẳng BC cắt MN tại trung điểm I của MN

c)Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại K

H là chân đường vuông góc kẻ từ A xuống BC

Xét ∆ ABK và ∆ ACK có 

AK là cạnh chung

AB=AC(cmt)

Góc BAK=góc KAC

suy ra tam giác ABK = tam giác ACK (c-g-c)

suy ra KB=KC nên K € AH đường trung trực của BC

Mặt khác :Từ ∆ DMB= ∆ ENC(câu a)

Ta có : BM=CN

            BK=CK(cmt)

            góc MBK=góc NCK=90 độ

Nên ∆ BMK = tam giác CNK(c-g-c)

suy ra MK=NK hay đường trung trực của MN luôn đi qua điểm K cố định (đpcm)

Do dài mình viết tắc nhìu. Bạn thông cảm

Bạn vào YouTube và đăng kí kênh nha. Kênh tên là CT CATTER

CHÚC BẠN HỌC TỐT!!!!!

Tk cho mình nha

Chúc bạn học tốt

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
1 tháng 2 2017

vẽ hình dùm mk nha bạn

1 tháng 2 2017

Nhưng mik ko bít lm thì mí hỏi chớ lm sao mà mik bít vẽ hình