K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

Cho tam giác ABC cân ở A,Lấy các điểm D E theo thứ tự thuộc các cạnh AB AC,Chứng minh tam giác BDM đồng dạng với tam giác CME,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

ko thấy ảnh thì vào thống kê hỏi đáp của mk nha

8 tháng 5 2016

Hình thì chú tự vẽ nhé, anh đây mệt lắm.

Xét góc BMC có:

góc DMB + góc EMC = 180 độ - góc DME (1)

Xét tam giác BDM có:

góc BDM + góc DMB = 180 độ - góc B (2)

Mà góc B = góc DME (3)

Từ (1), (2), (3) => góc EMC = góc BDM

Xét tam giác BDM và tam giác CME có:

góc EMC = góc BDM (cmt)

góc B = góc C (tam giác ABC cân tại A)

=>tam giác BDM~tam giác CME (g - g)

13 tháng 4 2019

1)

∆BDM có BDM + DBM + BMD = 180°

BMD + DME + CME = 180°

DME = DBM

Nên BDM = CME

2) ∆BMD ~ ∆CEM (g.g)

13 tháng 4 2019

Ta có: tam giác ABC cân tại A

=>^B=^C

Mà ^B=^DME

Suy ra: ^C=^DME

Mặt khác: ^BME=^BMD+^DME=^MEC+^C(góc ngoài của tam giác MEC)

Suy ra: ^BMD=^MEC

Xét tam giác BMD và tam giác CEM có:

^B=^C(gt)

^BMD=^MEC(cmt)

Do đó: ΔBMD~ΔCEM(g.g)

Suy ra: BMCE =BDCM ⇔BM·CM=CE·BD

Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi

Vậy BD.CE không đổi

28 tháng 5 2018

A B C M D E

a) \(\frac{MB}{EC}=\frac{DB}{MC}\)

\(\Leftrightarrow MB.MC=EC.DB\)

Mà tg ABC cân tại A => MC = MB

=> \(BM^2=BD.CE\)(đpcm)

b) Xét tg MDE và BDM

\(\widehat{MDE}=\widehat{BDM}\)(gt)

\(\widehat{MDB}=\widehat{EDM}\)(gt)

\(\Rightarrow\Delta MDE~\Delta BDM\)

28 tháng 5 2018

A B C D E M

a) \(\widehat{MDB}=\widehat{CME}\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta DBM;\Delta MCE\left(g.g\right)\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\)hay \(\frac{BM}{CE}=\frac{BD}{BM}\)(M là trung điểm BC)

\(\Rightarrow BM^2=BD.CE\)

b) \(\widehat{BMD}=\widehat{MEC}\)\(\Delta DBM\)và \(\Delta MCE\)đồng dạng)

Mà BME là góc ngoài tam giác MEC

=> \(\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{MCE}=\widehat{BMD}+\widehat{MCE}\)

\(\Rightarrow\widehat{DME}=\widehat{MCE}=\widehat{MBA}\left(1\right)\)

Từ \(\Delta BDM;\Delta MCE\left(g.g\right)\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\)hay \(\frac{DM}{ME}=\frac{MC}{CE}\left(2\right)\)

Từ (1) và (2) => \(\Delta DME\Delta MCE\left(c.g.c\right)\)

Mà \(\Delta DBM\Delta MCE\left(g.g\right)\Rightarrow\Delta DBM~\Delta DME\)