Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
=>ΔABH=ΔACK
b: góc KBC+góc ICB=90 độ
góc IBC+góc HCB=90 độ
mà góc KBC=góc HCB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)
=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
b/ Xét t/g ABH và t/g ACK có
AB = AC
\(\widehat{ABH}=\widehat{ACK}\)
BH = CK
=> t/g ABH = t/g ACK (c.g.c)
=> AH = AK
=> t/g AHK cân tại A
c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có
BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)
=> t/g BHM = t/g CKN (ch-gn)
=> BM = CNd/ Có
AH = AK
HM = KN (t.g BHM = t/g CKN)
=> AM =AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)
Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)
=> \(\widehat{AMN}=\widehat{AHK}\)
Mà 2 góc này đồng vị
=> MN// HK
a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)
b) Xét ΔABH và ΔACK có
AB=AC(ΔABC cân tại A)
\(\widehat{ABH}=\widehat{ACK}\)(cmt)
BH=CK(gt)
Do đó: ΔABH=ΔACK(c-g-c)
nên AH=AK(hai cạnh tương ứng)
Xét ΔAHK có AH=AK(cmt)
nên ΔAHK cân tại A(Định nghĩa tam giác cân)
c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có
BH=CK(gt)
\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)
Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)
Suy ra: BM=CN(hai cạnh tương ứng)
d) Ta có: ΔMHB=ΔNKC(cmt)
nên MH=NK(hai cạnh tương ứng)
Ta có: AM+MH=AH(M nằm giữa A và H)
AN+NK=AK(N nằm giữa A và K)
mà AK=AH(cmt)
và MH=NK(cmt)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)
Ta có: ΔAHK cân tại A(cmt)
nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)
mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị
nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xet ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
=>ΔABH=ΔACK
b: ΔABH=ΔACK
=>góc ABH=góc ACK
=>góc OBC=góc OCB
=>ΔOBC cân tại O
c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
OB=OC
BK=CH
=>ΔOKB=ΔOHC
d: Xet ΔBCA có AH/AC=AK/AB
nên HK//BC
a: Xet ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
=>ΔABH=ΔACK
b: ΔABH=ΔACK
=>góc ABH=góc ACK
=>góc OBC=góc OCB
=>ΔOBC cân tại O
c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
OB=OC
BK=CH
=>ΔOKB=ΔOHC
d: Xet ΔBCA có AH/AC=AK/AB
nên HK//BC
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)
mik cần gấp nha cứu mik
còn bạn nào hcoj giỏi thức ko huhu :((
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔAHK có AH=AK(ΔABH=ΔACK)
nên ΔAHK cân tại A
c: Xét ΔABC có
AK/AB=AH/AC
Do đó: KH//BC