K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

13 tháng 4 2020

a/

*Cách 1:

Ta có: ΔABC cân tại A

=> AC = AB

Và: \(\widehat{ABC}=\widehat{ACB}\)

Hay: \(\widehat{ABH}=\widehat{ACH}\)

Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AB = AC (cmt)

\(\widehat{ABH}=\widehat{ACH}\) (cmt)

Do đó: ΔAHB = ΔAHC (c.h - g.n)

*Cách 2:

Xét ΔAHB và ΔAHC có:

AB = AC (ΔABC cân tại A)

AH: cạnh chung

=> ΔAHB = ΔAHC (c.h - c.g.v)

b) Có: ΔAHB = ΔAHC (câu a)

=> HB = HC (2 cạnh tương ứng)

Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:

Cạnh huyền HB = HC (câu b)

\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)

=> ΔEBH = ΔFCH (c.h - g.n)

d) Sửa đề: EF // BC

Có: ΔEBH = ΔFCH (câu c)

=> EB = FC (2 cạnh tương ứng)

Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)

Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)

=> AE = AF

=> ΔAEF cân tại A

=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)

Có: ΔABC cân tại A

=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)

Mà 2 góc này lại là 2 góc đồng vị

=> EF // BC

25 tháng 12 2018

Xét tg AHB và tg AHC,ta có:

AH chung

gBAH=gCAH(tia phân giác của góc A cắt BC tại H)

AB=AC(gt)

=>tg AHB =tg AHC(c-g-c)

Xét tg ABC,có:AB=AC (gt)

=>tg ABC cân tại A

mà AH là tia phân giác

=>AH là đường cao

=>AH vuông góc vs BC

Ta có:g BAH+g ABH=g AHB=90*

và gDHB+gDBH=gBDH=90*

=>góc HAB = góc BHD

25 tháng 12 2018

gợi ý phần c

gọi F là giao điểm của AH và DE

Xét tg ADH và tg AEH,có

AH chung

ADH=AEH=90

DAH=EAH

=>tg ADH =tg AEH(ch-gn)

=>AD=AE

=>tg ADE cân tại A

mà AF là tia phân giác

=>AF vuông góc vs DE

ta có BHF=EFH=90

=>DE//BC

p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.

22 tháng 1 2022

Bạn tự vẽ hình nhá.

a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:

AB = AC (gt)

AH là cạnh chung

=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )

b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )

                                                                và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )

c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)

Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:

HB = HC ( cmt )

\(\widehat{KBH}=\widehat{ICH}\)

=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )

22 tháng 1 2022

cảm ơn bạn nhé

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của BC

HD//AC

Do đó: D là trung điểm của AB

Ta có: ΔHDA vuông tại H

mà HD là đường trung tuyến

nên DA=DH

c: Xét ΔABC có

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tai G

Do đó: G là trọng tâm

=>B,G,E thẳng hàng