K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có

AH chung

AF=AE

Do đó: ΔAFH=ΔAEH

Suy ra: \(\widehat{FAH}=\widehat{EAH}\)

hay AH là tia phân giác của góc BAC

mà ΔABC cân tại A

nên AH là đường cao

16 tháng 3 2022

Xét tg ABE vuông tại E và tg ACF vuông tại F, có:

AB=AC(tg ABC cân tại A)

góc E=góc F(=90 độ)

góc BAE chung.

=>tg ABE=tg ACF.

 b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có

AH chung.

AF=AE(2 cạnh tương ứng)

góc E=góc F.

=>tg AHF=tg AEH.

=>góc FAH=góc EAH.

=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.

 

24 tháng 4 2021

a) Xét hai tam giác vuông ΔAHB và ΔAHC ta có:

AH chung

AB = AC (GT)

⇒ Δ AHB = ΔAHC ( cạnh huyền - cạnh góc vuông )

b) Ta có : ΔAHB = ΔAHC ( theo phần a )

=> Góc BAH = Góc CAH ( hai góc tương ứng )     (*)

Ta lại có: HD // AC ( GT )

=> Góc DHA = Góc CAH ( hai góc so le trong )     (**)

Từ (*) và (**) => Góc DHA = Góc BAH

=> ΔADH cân tại D

=> AD = DH

c) Ta có: ΔABH = ΔACH ( theo phần a)

⇔ BH =HC ( hai cạnh tương ứng )

⇒ AH là trung tuyến ΔABC tại A     (***)

Ta có : DH // AC ⇒ ∠DHB = ∠ACB ( hai góc đồng vị )

Mà ΔABC cân tại A ( GT )

⇒ ∠ABC= ∠ACB

⇒ ∠DHB = ∠DBH

=> ΔDHB cân tại D

=> DB =DH

Lại có AD = DH ( theo phần b ) => DA = DB

=> CD là trung tuyến ΔABC     (****)

Từ (***) và (****) ta có: 

AC cắt CD tại G => G là trọng tâm ΔABC

Mà CE = EA => BE là trung tuyến ΔABC tại B

=> BE qua G => B, G, E thẳng hàng

24 tháng 4 2021

B H C K A D E G

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

\(\widehat{KBC}=\widehat{HCB}\)

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{KCB}=\widehat{HBC}\)

hay ΔIBC cân tại I

b: Xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc A

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN