K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)

5 tháng 7 2020

Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T

a,Xét ΔHAB và ΔABC

\(\widehat{BHA}=\widehat{BAH}=90^o\)

Góc B chung

\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)

c,Xét ΔABC ta có:

BC2=AC2+AB2

BC2=162+122

BC2=400

BC=√400=20cm

Ta có ΔHAB~ΔABC(câu a)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a.Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)

b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow AH.BC=AB.AC\)

c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)

\(BC=20cm\)

Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12\times16}{20}\)

\(\Rightarrow AH=9,6cm\)

Chúc bạn học tốt.Phần d mình chưa giải đc nha

13 tháng 2 2020

Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33

A B C M K D E

a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)

\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )

Mà : \(MC=MB\) ( Do M là trung điểm của BC )

\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )

b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )

Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)

\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)

Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)

\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)

c)  Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :

+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)

+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)

\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )

Nên : E là trung điểm của KD ( đpcm )

d) Ta có : \(KD=10\Rightarrow KE=5\)

Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)

\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)

Vậy : \(BC=16cm\)

20 tháng 4 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

1 tháng 5 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
26 tháng 5 2016

A B C D E M

26 tháng 5 2016

tự vẽ hình nha 

a) Vì DM là tia phân giác của góc AMB nên góc M\(_2\) =góc  \(\frac{AMB}{2}\)    (1)

Vì ME là tia phân giác của góc AMC nên góc M\(_3\)= góc \(\frac{AMC}{2}\)  (2)

Từ (1) và (2)  => góc DME = góc M\(_2\)+góc M\(_3\)  = góc \(\frac{AMB}{2}\)+ góc \(\frac{AMC}{2}\)

                                                                           = góc \(\frac{AMB+AMC}{2}\)= góc \(\frac{BMC}{2}\) =\(\frac{180^0}{2}\)

                                                                                                                          = 90\(^0\)

Vậy tam giác DME vuông tại M (đpcm)