Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác AD1E, có AD = AE(gt) nên tam giác AD1E là tam giác cân tại A
mà Â =50o => góc AD1E = \(\frac{180^0-Â}{2}=\frac{180^0-50^0}{2}=\frac{130^0}{2}=65^0\)(1)
Tam giác ABC cân tại A=> góc ABC \(=\frac{180^0-Â}{2}=\frac{180^0-50^0}{2}=\frac{130^0}{2}=65^0\)(2)
Từ (1), (2) => góc AD1E = ABC nên tứ giác BDEC là hình thang (ở vị trí đ/vị)
mà góc D1 +D2 =1800 ( kề bù), do đó D2 = 1800 - D1 = 1800 - 650 = 1150
Vậy góc D trong tứ giác BDEC = 1150
a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A
\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)
Vì \(\Delta ABC\)cân tại A nên
Góc CBA = \(\frac{180^o-A}{2}\)
\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )
\(\Rightarrow\)\(DE//BC\)
Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A )
\(\Rightarrow\)Tứ giác BDEC là hình thang cân
b,
Ta có :
^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)
\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)
a) Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)
D\(\in\)AB(gt)
E\(\in\)AC(gt)
Do đó: DE//BC(Định lí Ta lét đảo)
Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang(Định nghĩa hình thang)
Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Bạn tham khảo nhé:
Trên tia đối của KG lấy điểm F sao cho KG=KF.
Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE
=> ΔADE đều. Mà G là trọng tâm của ΔADE
=> G cũng là giao của 3 đường trung trực trong ΔABC
=> DG=AG (T/c đường trung trực) (1)
Xét ΔGDK và ΔFCK:
KD=KC
^DKG=^CKF => ΔGDK=ΔFCK (c.g.c)
KG=KF
=> DG=CF (2 cạnh tương ứng). (2)
Từ (1) và (2) => AG=CF.
Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK
Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)
=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)
Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE
=> ^GDE=^ADE/2=300.
Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)
Từ (3) và (4) => ^GAB=^FCB
Xét ΔAGB và ΔCFB có:
AB=CB
^GAB=^CFB => ΔAGB=ΔCFB (c.g.c)
AG=CF
=> GB=FB (2 cạnh tương ứng) (5).
=> ^ABG=^CBF (2 góc tương ứng). Lại có:
^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:
^CBF+^GBC=600 => ^GBF=600 (6)
Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600
K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300
Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.
ĐS: ^GBK=300, ^BGK=600, ^BKG=900.
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC