Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ
AC < AB ( 65 độ > 25 độ)
b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)
=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)
c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC
=> BEC = BAC = 90 độ
=> tam giác BEC vuông tại E (đpcm)
d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)
A B C D H E F K
Xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 80(Gt); góc ABC = 60 (gt)
=> góc ACB = 180 - 80 - 60 = 40
=> góc ACB < góc ABC < góc BAC ; tam giác ABC
=> AB < AC < BC (đl)
b, xét tam giác ABE và tam giác DBE có : BE chung
AB = BD (gt)
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
=> tam giác ABE = tam giác DBE (c-g-c)
c, xét tam giác BAD có : AB = BD (gt) => tam giác BAD cân tại B (đn)
mà góc ABC = 60 (gt)
=> tam giác BAD đều (tc)
=> AD = AB (Đn)
BE là phân giác của góc ABC (Gt) => góc ABE = 1/2.góc ABC mà góc ABC = 60 (gt)
=> góc ABE = 12.60 = 30
Xét tam giác ABE có : góc ABE + góc AEB + góc BAE = 180 (đl)
góc BAE = 80 (gt)
=> góc AEB = 180 - 80 - 30 = 70
=> góc AEB < góc BAE ; tam giác BAE
=> AB < BE hay AD < BE (đl)
d, không biết