Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!
Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)
và \(\widehat{CDA}=90^0-\widehat{HAD}\)
Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)
Tương tự ta có: AB = EB
\(\Rightarrow AB+AC=EB+DC\)
\(=ED+DB+DC=DE+BC\)
\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)
Vậy DE = 2 cm
A B C H D E
Ta có: \(\Delta\)ABC vuông tại A
=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)= 25 => BC = 5 (cm)
Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)
=> AH = 2,4 (cm)
Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)
=> BH = 5 - 3,2 = 1,8 ( cm )
AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2
=> EC = 2 ( cm ) ; EH = 1,2 ( cm )
AD là phân giác ^BAH => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8
=> DH = 0,8 ( cm ) ; BD = 1( cm )
Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )
cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC