K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì AH vuông góc với BC mà tam giác ABC cân tại A (gt)

Nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

\(\Rightarrow BH=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\)

Áp dụng định lý Pi-ta-go vào tam giác ABH vuông tại H có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

Hay \(AH^2=12^2-5^2\)

\(\Rightarrow AH^2=144-25\)

\(\Rightarrow AH^2=119\)

\(\Rightarrow AH=\sqrt{119}\)

17 tháng 1 2019

Vì \(\Delta ABC\)cân tại A 

\(\Rightarrow AB=AC=12cm\)và \(\widehat{B}=\widehat{C}\)

Ta có: \(\Delta ABH\)vuông tại H

\(\Rightarrow\widehat{BAH}+\widehat{B}=90^o\)(1)

Ta lại có: \(\Delta ACH\)vuông tại H

\(\Rightarrow\widehat{CAH}+\widehat{C}=90^o\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{BAH}+\widehat{B}=\widehat{CAH}+\widehat{C}\)

mà \(\widehat{B}=\widehat{C}\)\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

Xét \(\Delta BAH\)và \(\Delta CAH\)ta có: +) \(\widehat{BAH}=\widehat{CAH}\)( cmt)

                                                          +) \(AB=AC\)

                                                          +) \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta BAH=\Delta CAH\left(g.c.g\right)\)

\(\Rightarrow BH=HC\)( 2 cạnh tương ứng )

mà \(BC=10cm\)

\(\Rightarrow BH=HC=5cm\)

Ta có \(\Delta BAH\)vuông tại H nên theo định lý Py-ta-go ta có:

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2+5^2=12^2\)

\(\Rightarrow AH^2=12^2-5^2=144-25=119\)

\(\Rightarrow AH=\pm\sqrt{119}\)

mà \(AH>0\)\(\Rightarrow AH=\sqrt{119}\)

Vậy \(AH=\sqrt{119}\)

17 tháng 1 2019

bài 1 : AH = \(\sqrt{119}\)cm
bài 2 : BN = \(\sqrt{49.54}\)cm

17 tháng 1 2019

* hình tự vẽ

1/

Xét tam giác ABC: tam giác ABC là tam giác cân(gt) mà AH là đường cao(vì AH\(\perp\)BC)=> AH cũng là đường trung tuyến=> BH=HC

Ta có: BC=HB+HC, mà HB=HC(cmt)=> HB=HC=\(\frac{BC}{2}\)=> HB=HC= 5cm

Xét tam giác ACH, theo định lý Py ta go, có:

AH^2+ HC^2=AC^2

=> AH^2+ 5^2= 12^2

=> AH^2= 144-25

=> AH^2= 119=> AH= căn 119cm

2/ Xét tam giác BCA, theo định lý Py ta go, có:

BA^2+ AC^2= BC^2=> 12^2+5^2=BC^2

=> 144+25= BC^2=> BC^2= 169=>BC=13cm

Mà M là trung điểm BC(gt)=> MB=MC nên ta có BC=MB+MC=> MB=MC=\(\frac{BC}{2}\)=> MB=MC=6,5

Xét tam giác BMN, theo định lý Py ta go, có:

BN^2+NM^2= BM^2

=> BN^2+2,7^2=6,5^2=> BN^2 = 42,25-7,29=> BM^2= 34,96=> BM= căn 34,96cm

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

25 tháng 1 2018

AC = AH + HC = 6 + 4 =10 ( cm )

Vì tam giác ABC cân tại A

=> AC = AB = 10 (cm)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

AB^2 = AH^2 + BH^2

=> BH^2 = AB^2 - AH^2

    BH^2 = 10^2 - 6^2 = 100 - 36 = căn 64 = 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

   BC^2 = HC^2 + HB^2

            = 4^2 + 8^2 = 16 + 64 =căn 80

Vậy BC = căn 80

25 tháng 1 2018

fdghgfghhjhj