K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a, xet tam giac ABM va tam giac ACM co

AB = AC ( tam giac ABC can)

goc ABM = goc ACM (tam giac ABC can)

BM = MC ( AM la duong trung tuyen)

suy ra tam giac ABM = tam giac ACM (c.g.c)

b,ta co BM=MC=1/2BC

suy ra BM = 1/2.6=3

ta co AM = AB + BM = 5+3 = 8

2 tháng 5 2017

C và d thì sao

26 tháng 4 2018

- Mn giúp mk vs ạ 

26 tháng 4 2018

cái này thì mình ko biết làm lắm nên ko giải

20 tháng 4 2016

55555

8 tháng 3 2020

a/ Xét ΔABM;ΔACMΔABM;ΔACM có :

⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC

⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)

b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :

⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC

⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)

⇔BH=CK

8 tháng 3 2020

BCE=ADC nhes cacs banj

26 tháng 4 2016

Xét tam giac ABC cân tại A ta có

AM là đường trung tuyến (gt)

=> AM là đường cao

--> AM vuong góc BC

ta có : AM là đường trung tuyến (gt)-> M là trung điểm BC-> BH=1/2 BC=1/2.10=5 cm

Xét tam giac ABM vuông tại HM

AB2=BM2+AM2 ( định lý pitago)

132= 52 +AM2

AM2 =169-25

AM2=144

AM=12

b) Xét tam giác ABC ta có

AM là đường trung tuyến (gt)

GM=1/3AM

-> G là trọng tâm tam giác ABC

-> BG là đường trung tuyến

mà BG cat AC tại N (gt)

nên BN là đường trung tuyến

-> N là trung điềm AC

-> AN=NC

c) ta có GM=1/3AM=1/3.12=4 cm

Xét tam giac BGM  vuông tại M ta có

BG2 =BM2+GM( dinh lý pitago)

BG2=42+32

BG2=25

BG=5

Xét tam giac ABC ta có"

BN là đường trung tuyến (cmb)

G là trọng tâm (cmb)

-> BG=2/3 BN

=> BN=3/2 BG=3/2.5=15/2=7.5 cm

d) Xét tam giác ABC ta có

 G là trọng tâm (cmb)

-> CG là đường trung tuyến 

mà CG cắt AB lại L (gt)

nên L là trung điềm AB

ta có

AL=AB:2 ( L là trung điểm AB)

AN=AC:2 (N là trung điểm AC)

AB=AC ( tam giác ABC cân tại A)

--> AL =AN

-> tam giác ALN cân tại A

ta có :

góc ALN= (180- góc A):2 ( tam giác ALN cân tại A)

goc ABC =( 180-góc A);2 ( tam giác ABC cân tại A)

==> goc ALN= goc ABC

mà 2 góc nằm ở vị trí đồng vị 

nên LN //BC

26 tháng 4 2016

A B C

đAY LÀ HINGF

2 tháng 5 2019

a, AM = ?

Xét ΔABM và ΔACM có:

AB = AC (hai cạnh bên)

^B = ^C (hai góc ở đáy)

BM = MC (gt)

Do đó: ΔABM = ΔACM (c.g.c)

=> ^AMB = ^AMC (hai góc tương ứng)

Mà ^AMB + ^AMC = 180o

=> ^AMB = ^AMC = 180o : 2 = 90o

Hay AM ⊥ BC

Ta có: BM = MB = BC/2 = 10/2 =5 (cm)

Áp dụng định lí Pytago vào ΔABM vuông tại M có:

AB2 = AM2 + MB2

=> AM2 = AB2 - MB2 = 132 - 52 = 169 - 25 = 144

=> AM = 12 (cm)

b, NA = NC

Ta có: GM = 1/2AM => AG = 2/3 = AM

Hay G là trọng tâm của ΔABC.

Mà BG cắt AC tại N => BN là trung tuyến ứng với AC

Hay NA = NC.

c, BN = ?

Ta có: GM = 1/3 AM = 1/3 . 12 = 4 (cm)

ÁP dụng định lý Pytago vào ΔBGM vuông tại M có:

BG2 = BM2 + MG2

=> BG2 = 52 + 42 = 25 + 16 = 41 => GB = √41

=> BN = BG + GN = 3BG = 3√41.

d, LN//BC

Vì AB = AC (hai cạnh bên)

Mà CL là trung tuyến ứng với AB, BN là trung tuyến ứng với AC.

Hay LA = LB = AN = NC = AB/2 (=AC/2) LA = LB

=> ΔALN cân tại A

=> ^ALN = ^ANL = 180o - ^BAC / 2

Mặt khác: ΔABC cân tại A => ^ABC = ^ACB = 180o - ^BAC / 2

=> ^ALN = ^ABC

=> LN // BC (TH: hai góc đồng vị)

4 tháng 5 2019

Load nhầm hình nhé ')) Sorry.

19 tháng 7 2019

a, Xét tam giác ABD và AED cs:

AB=AE(gt)

góc BAD=EAD(p.g)

AD: cạnh chung

=> tam giác ABD=AED(c.g.c)

b, từ a=> góc ABD=AED(2 góc t/ứng)

Xét tam giác ABC và AEF cs:

góc ABD=AED(cmt)

AB=AE(gt)

góc A: góc chung

=> tam giác ABC=AEF(g.c.g)

c, từ b=> AC=AF(2 cạnh t/ứng)

Xét tam giác FAM và CAM cs:

AF=AC(cmt)

góc FAM=CAM (gt)

AM: cạnh chung

=> tam giác FAM=CAM(c.g.c)

=>FM=MC(2 cạnh t/ứng) 

=> DM là đường trung tuyến của đt FC

Xét tam giác DFC cs:

DM là đường trung tuyến 

CN là đường trung tuyến ( vì DN=NF)

Mà DM và CN giao nhau tại G

=> G là trọng tâm của tam giác DFC

=> CG/GN=2( t/c trọng tâm trg tam giác)