Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M K I
a, Xét tứ giác AMCK ,có :
AI = IC ( I là trung điểm của AC )
MI = IK ( K đx với M qua I )
=> AMCK là hình bình hành (1)
ΔABC cân tại A ,có : AM là đường trung tuyến
=> AM đồng thời là đường cao của ΔABC
=> AM \(\perp\) BC (2)
Từ (1)(2) => AMCK là hình chữ nhật
b, AMCK là hình chữ nhật
=> AK // MC ; AK = MC
=> AK // MB , AK = MB ( MB = MC )
=> AKMB là hình bình hành
c, Để AMCK là hình vuông
=> AM = MC
=> AM = 1/2 BC
=> ΔABC vuông tại A
Vậy ΔABC vuông cân tại A thfi AMCK là hình vuông
d, \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lý Py-ta-go vào ΔAMC vuông tại M :
\(AC^2=AM^2+MC^2\)
\(5^2=AM^2+3^2\)
\(AM^2=5^2-3^2=16\Rightarrow AM=4\left(cm\right)\)
\(S_{AMCK}=AM.MC=4.3=12\left(cm^2\right)\)
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đo: AMCK là hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
=>AB=MK
c: Để AMCK là hìh vuông thì AM=CM=BC/2
=>ΔABC vuông tại A
d: P=(5+5+6)/2=8
\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)
*Hình Tự Vẽ Nheeee
a)
Tam giác ABC có:
M là trung điểm của BC (gt)
I là trung điểm của AC (gt)
=> MI là đường trung bình của tam giác ABC
=> MI // AB ( tính chất đường trung bình )
Ta có:
Mi // AB (cmt) => góc CAB = góc MIC =90 độ ( đồng vị )
=> MK vuông góc với AC
Tứ giác AMCK có:
K đx M qua I (gt) => I là trung điểm của MK
I là trung điểm của AC (gt)
MK vuông góc với AC (cmt)
=> 2 đường chéo MK và AC vuông góc với nhau tại trung điểm I
=> Tứ giác AMCK là hình thoi
b)
Áp dụng định lí Pitago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\Rightarrow AC=12\left(cm\right)\)
Diện tích tam giác ABC là :
\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC=30cm^2\)
Vậy....
c)
Giả sử Tứ giác AMCK là Hình vuông => góc MAK = 90 độ; AC là đường phân giác của góc MAK ( tính chất hình vuông )
Ta có:
Góc MAK = 90 độ (cmt)
mà AC là đường phân giác của góc MAK (cmt)
=> góc MAC = góc KAC = 45 độ
Theo bài ra ta có:
Góc BAC = 90 độ (gt)
mà : góc MAC = 45 độ (cmt) (1)
Góc BAC = góc MAC + góc MAB
=> Góc MAB = 45 độ (2)
Từ 1 và 2 => AM là đường phân giác của giác BAC
Theo bài ra ta có:
+ AM là đường trung tuyến
+ AM là đường phân giác của góc BAC
=> AM vừa là đường cao vừa là đường trung tuyến của tam giác ABC
Tam giác ABC có:
AM vừa là đường cao vừa là đường trung tuyến của tam giác ABC (cmt)
Goca BAC vuông (gt)
=> Tam giác ABC vuông cân tại A
Vậy đk của ∆ abc để amck là hvuông là Tam giác ABC vuông cân tại A
Tứ giác AMCK là hcn vì
AI=IC(I là trung điểm của AC)
IM=IK(K là điểm đối xứng vs M qua I)
=>Tứ giác AMCK là hình bình hành(DHNB số 5)
Xét tứ giác AMCK có góc M vuông
=> Hình bình hành AMCK là hcn
Tứ giác ACMB là hình bình hành vì
Ta có Bm ss AK (MC ss AK theo tính chắt hcn)
Xét tam giác ABC có BM=MC,AI=IC
=>IM là đường trung bình của tam giác ABC
=>IM ss Ab
Mà I nằm giữa M và K =>MK ss AB
=>ABMK là hình bình hành (DHNB số 1)
Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông
giúp mk với đang cần gấp
A K I C M B 5 5 6
a. Ta có : IM = IK ( vì K đối xứng với M qua I)
IA = IC ( vì I là trung điểm AC)
\(\Rightarrow\) AMCK là hbh (1)
Ta lại có: AM là ĐTT của \(\Delta\)cân ABC đồng thời là đường cao
\(\Rightarrow\)\(AM\perp BC\)
\(\Rightarrow\)\(\widehat{AMC}=90^0\)(2)
Từ (1) và (2) suy ra: AMCK là HCN
b. Ta có: \(AC=KM\)( vì AMCK là HCN )
Mà \(AC=AB\)( vì \(\Delta\)ABC cân tại A )
\(\Rightarrow\)\(KM=AB\)(3)
Ta lại có: \(AK=MC\)( vì AMCK là HCN )
Mà \(BM=MC\)( vì AM là ĐTT )
\(\Rightarrow\)\(AK=BM\)(4)
Từ (3) và (4) suy ra : ABMK là hbh
c. Để tứ giác AMCK là hình vuông thì:
\(AM=MC\)
Mà \(BM=MC=\frac{BC}{2}\)
\(\Rightarrow\)\(AM=\frac{BC}{2}\)
Vậy \(\Delta\)ABC vuông cân tại A.
d. Ta có: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3cm\)
Áp dụng định lí pitago cho \(\Delta MCK\)vuông tại C
\(MK^2=MC^2+KC^2\)
\(5^2=3^2+KC^2\)
\(25=9+KC^2\)
\(KC^2=25-9\)
\(KC^2=16\)
\(\Rightarrow KC=4cm\)
Diện tích của HCN AMCK là:
\(S_{AMCK}=MC\times KC=3\times4=12cm^2\)