Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác abc vuông tại a
theo đlí pytago có
\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
b,
xét tam giác abm và tam giác bkm có
góc bam=góc bkm(gt)
bm chung
góc abm=góc kbm(gt)
=>tam giác abm = tam giác bkm(gcg)
Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: HB < AH < HC.
b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.
Chứng minh: CI là tia phân giác của góc ACB.
c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).
Chứng minh: ID + IC > KE+ DC.
Câu hỏi tương tự Đọc thêmGiải thích các bước giải:
a)Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
AB2+AC2=BC2
=>BC2=62+82
=>BC2=100
=>BC=10 (cm)
b)Xét tam giác ABD vuông tại A và tam giác EBD vuông tai E có:
BD : cạnh chung
góc ABD=góc EBD (BD là p/g của góc ABC)
Suy ra: tam giác ABD= tam giác EBD
c)Ta có AC là đường cao thứ nhất của tam giác BFC
FE là đường cao thứ 2 của tam giác BFC
Mà AC và FE cắt nhau tại D nên D là trực tâm
=>BD là đường cao thứ 3 của tam giác BFC
Mà BD cũng là đường p/g của tam giác BFC nên: tam giác BFC cân ở B
Mà góc FBC=60o(gt)
nên: tam giác FBC đều
d mình đang suy nghĩ do khó quá
tại sao cân tại A mà AB = 6cm, AC= 8cm?