Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Hai tam giác vuông \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C
b) Vì tam giác AHC đồng dạng tam giác BKC nên
\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)
Theo định lý Pytago ta có
\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)
\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)
\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)
Theo Pytago ta có
\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)
\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)
a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có
góc C chung
=>ΔCHA đồng dạng với ΔCKB
b: Xét ΔCAB có
AH,BK là đừog cao
AH cắt BK tại D
=>D là trực tâm
=>CD vuông góc AB tại E
góc CHA=góc CEA=90 độ
=>CHEA nội tiếp
=>góc BHE=góc BAC
mà góc HBE chung
nên ΔBEH đồng dạng với ΔBAC
c: góc KHD=góc ACE
góc EHA=góc KBA
mà góc ACE=góc KBA
nên góc KHD=góc EHD
=>HA là phân giác của góc EHK
b) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
\(\widehat{KBC}=\widehat{HCB}\)(ΔBAC cân tại A)
Do đó: ΔBKC\(\sim\)ΔCHB(g-g)
a) Áp dụng định lí Pytago vào ΔBKC vuông tại K, ta được:
\(BC^2=BK^2+CK^2\)
\(\Leftrightarrow CK^2=BC^2-BK^2=5^2-3^2=16\)
hay CK=4(cm)
Diện tích tam giác BKC là:
\(S_{BKC}=\dfrac{BK\cdot KC}{2}=\dfrac{3\cdot4}{2}=\dfrac{12}{2}=6\left(cm^2\right)\)
a) Xét tam giác BKC và CHB có:
góc B= góc C (tính chất tam giác cân)
góc BKC = góc BHC = 90 độ
=> Tam giác BKC đồng dạng tam giác CHB
=> \(\frac{BK}{CH}=\frac{BC}{BC}=1=k\)
b) Tam giác BHA đồng dạng tam giác CKA (g-g)
=> \(\frac{HA}{AK}=\frac{BA}{AC}=1\)
=> \(\frac{AK}{AB}=\frac{AH}{AC}\)
=> KH//BC (Định lí Ta - lét đảo)
c) Ta có theo hệ quả Ta-let:
\(\frac{AK}{AB}=\frac{KH}{BC}=>\frac{AK}{b}=\frac{KH}{a}=>KH=\frac{a.AK}{b}\)
Ta có: AK2+KC2=b2 (1)
KC2+KB2=a2 => KC2+(b-AK)2=a2 =>KC2-2b.AK+AK2=a2 (2)
Trừ 2 cho 1, ta có: -2b.AK=a2-b2 =>\(AK=\frac{a^2-b^2}{-2b}\)
Từ đó => \(KH=\frac{a\times\frac{a^2-b^2}{-2b}}{b}\)
a: Xet ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồg dạng với ΔHBA
b: ΔABC vuông tại A mà AH là đường cao
nên HA^2=HB*HC
c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co
góc ACD=góc HCE
=>ΔCAD đồng dạng với ΔCHE
=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)
a: Xét ΔAHC vuông tại H và ΔBKC vuông tại K có
góc C chung
Do đó: ΔAHC\(\sim\)ΔBKC
b: Ta có: ΔAHC\(\sim\)ΔBKC
nên HC/CK=AC/BC
=>6/CK=10/12=5/6
=>CK=7.2(cm)
a, Xét Δ AHC và Δ BKC, có :
\(\widehat{AHC}=\widehat{BKC}=90^o\)
\(\widehat{ACH}=\widehat{BCK}\) (góc chung)
=> Δ AHC ∾ Δ BKC (g.g)
b,
Ta có : AB = AC (Δ ABC cân tại A)
Mà AB = 10 (cm)
=> AC = 10 (cm)
Ta có :
Δ ABC cân tại A
AH là đường cao
=> AH là đường trung trực
=> 2HC = BC
=> 2HC = 12
=> HC = 6 (cm)
Ta có : Δ AHC ∾ Δ BKC (cmt)
=> \(\dfrac{AC}{BC}=\dfrac{HC}{KC}\)
=> \(\dfrac{10}{12}=\dfrac{6}{KC}\)
=> \(KC=\dfrac{12.6}{10}=7,2\left(cm\right)\)
Xét Δ BKC vuông tại C, có :
\(S_{\Delta_{BCK}}=\dfrac{1}{2}.CK.BC\)
=> \(S_{\Delta_{BCK}}=43,2\left(cm^2\right)\)