K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

HA chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

b: Xét ΔBHA vuông tại H và ΔBHD vuông tại H có

BH chung

HA=HD

Do đó: ΔBHA=ΔBHD

=>BA=BD

=>ΔBAD cân tại B

c: Ta có: \(\widehat{BDA}=\widehat{BAD}\)(ΔBAD cân tại B)

\(\widehat{BAD}=\widehat{CAH}\)(cmt)

Do đó: \(\widehat{BDA}=\widehat{DAC}\)

=>BD//AC

28 tháng 11 2016

A B C H E D I

a) xét tam giác AHB và tam giác AHD ta có

AH=AH ( cạnh chung)

BH=HD(gt)

góc AHB= góc AHD (=90)

-> tam giác AHB= tam giác AHD (c-g-c)

b) ta có

DE vuông góc AC (gt)

AB vuông góc AC ( tam giác ABC vuông tại A)

-> DE//AB

ta có

AC>AB (gt)

-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)

c) Xét tam giác AHB và tam giác IHD ta có

AH=HI (gt)
BH=HD(gt)

góc AHB= góc IHD (=90)

-> tam giac AHB = tam giác IHD (c-g-c)

-> góc BAH= góc HID ( 2 góc tương ứng )

mà 2 góc nẳm ở vị trí sole trong 

nên BA//ID

ta có

BA//ID (cmt)

BA//DE (cm b)

-> ID trùng DE

-> I,E,D thẳng hàng

28 tháng 4 2016

a) xét tam giac ABH và tam giac ADH ta có

AH=AH (canh chung)

BH=HD(gt)

goc AHB= góc AHD (=90)

-> tam giac ABH= tam giac ADH (c-g-c)

-> AB=AD (2 cạnh tương ứng)

-> tam giac ADB cân tại A

b)Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( định lý pitago)

152=122+ BH2

BH2=152-122

BH2=81

BH=9

Xét tam giác AHC vuông tại H ta có

AC2=AH2+HC2 ( định lý pitago)

AC2=122+162

AC2=400

AC=20

c) ta có BC= BH+HC=9+16=25

Xét tam giác ABC ta có

BC2=252=625

AB2+AC2=152+202=625

-> BC2=AB2+AC2 (=625)

-> tam giac ABC vuông tại A (định lý pitago đảo)

d)xét tam giác ABH và tam giác EDH ta có

BH=HD (gt)

AH=HE(gt)

góc BHA= góc DHE (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc BAH= góc DEH (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong 

nên AB// ED

lại có AB vuông góc AC ( tam giác ABC vuông tại A)

-> ED vuông góc AC

28 tháng 4 2016

mày ngu như chó

11 tháng 7 2017

A C M B H G

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có:

 AB = AC,   B = C \(\Rightarrow\)\(\Delta AHB\)\(\Delta AHC\)(cạnh huyền - góc nhọn)

b) Xét \(\Delta AHC\)theo định lí Pi-ta-go ta có:

  \(AC^2=AH^2+HC^2=4^2+3^2\)\(=16+9=25\Rightarrow AC=5cm\)

c) Xét \(\Delta AHC\) và \(\Delta MHC\)có:

   AH = MH,   CH chung  \(\Rightarrow\)\(\Delta AHC\)=  \(\Delta MHC\)( cạnh góc vuông )

 \(\Rightarrow\)HAC = HMC \(\Rightarrow\)HMC = HAB \(\Rightarrow\)AB // CM

9 tháng 5 2018

ABCHIEDNM
 

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC(tam giác ABC cân tại A)

Góc A chung 

=> Tam giác ABD=tam giác ACE(ch-gn)

b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
                 Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)

\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)

Do đó tam giác BHC cân tại H

13 tháng 4 2018

ai trl trc thì mk cho hen!!!

13 tháng 4 2018

a, Xét hai tam giác ABH và tam giác ADH có

BH=HD(giả thiết)

góc BHA=góc DHA(=90 độ)

AH chung

Suy ra ABH=ADH(dpcm)

b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^

A B D H C

a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:

\(AH=DH\left(gt\right)\)

BH là cạnh chung

\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)

b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )

21 tháng 3 2020

A)Xét t/giác AHB và t/giác DHB có

    AH=AD(gt)

  Góc AHB=góc DHB=900

  BH là cạnh chung

Suy ra t/giác AHB=t/giác DHB(c-g-c)

B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)

Suy ra :BC là tia phân giác của góc ABD

C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N 

  AM=FM(gt)

  Góc AHM= góc FMN(2 góc đối đỉnh)

Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)

Suy ra AH=NF (2 cạnh tương ứng)

Mà AH=HD (gt)

Suy ra NF=HD

Chúc bn hc tốt

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

2 tháng 5 2016

A C B H E 8cm 6cm

a)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2= AB2+AC2= 62+82= 36 + 64= 100

\(\Rightarrow BC=\sqrt{100}=10cm\)

b)

Xét tam giác AHD và tam giác AHB:

AHD=AHB = 90o

AH chung

HD=HB

\(\Rightarrow\)tam giác AHD = tam giác AHB (2 cạnh góc vuông)

\(\Rightarrow\)AB=AD (2 cạnh tương ứng)

c)

Xét tam giác AHB và tam giác EHD:

HA = HE

AHB=EHD (đối đỉnh)

HD=HB

\(\Rightarrow\)tam giác AHB = tam giác EHD (c.g.c)

\(\Rightarrow\)BAH=DEH (2 góc tương ứng)

Ta có:

         BAH+HAC = 90o (phụ nhau)

\(\Leftrightarrow\)   DEH +HAC =90o 

\(\Rightarrow\)tam giác ACE vuông tại C

\(\Rightarrow\)ED vuông góc với AC

d)

Ta có : AH là cạnh góc vuông lớn của tam giác AHD.

              DH là cạnh góc vuông bé của tam giác AHD

\(\Rightarrow\)AH > DH (1)

Mà: AE = 2 * AH           (2)

       BD= 2* DH             (3)

\(\Rightarrow\)AE > BD

2 tháng 5 2016

B A C H E D

a,Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

\(\Rightarrow\) BC2=62+82=36+64=100

\(\Rightarrow\) BC=\(\sqrt{100}\) =10 (cm)

b,Xét 2 tam giác vuông AHB và AHD có: góc BHA=góc DHA(=90 độ ); HB = HD ( gt );HA chung

\(\Rightarrow\) tam giác AHB = tam giác AHD. suy ra AB = AD ( 2 cạnh tương ứng )

c, Xét tam giác BHA và tam giác CHE có: HB=HC(gt);HA=HE (gt);góc BHA= góc CHE (đối đỉnh)

\(\Rightarrow\) tam giác BHA = tam giác CHE ( c.g.c). Suy ra góc ABC = góc ECB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên BA//EC.

Ta có BA//EC mà BA vuông góc với AC nên EC vuông góc vói AC

                                            

19 tháng 12 2016

A B C D H

a) Xét \(\Delta BHA\) và \(\Delta BHD\) có:

  • BH là cạnh chung
  • \(\widehat{BHA}=\widehat{BHD}\) (\(\widehat{BHA}=90^o\) mà \(\widehat{BHA}\) và \(\widehat{BHD}\) kề bù => \(\widehat{BHD}=90^o=\widehat{BHA}\))
  • AH=HD (giả thiết đề bài)

=>\(\Delta BHA\)=\(\Delta BHD\) (c.g.c) => \(\widehat{HBA}=\widehat{HBD}\) (2 góc tương ứng) => BC là tia phân giác của góc BAD

b) Xét \(\Delta ABC\) và \(\Delta DBC\) có:

  • AB=BD (vì \(\Delta BHA\)= mà AB và BD là 2 cạnh tương ứng)
  •   (vì = mà  và  là 2 góc tương ứng)
  • BC là cạnh chung  

  

​=>\(\Delta ABC\) =\(\Delta DBC\) ( c.g.c)

Vậy bài toán đã được chứng minh.

19 tháng 12 2016

bạn làm lại câu B dc ko ạ, ko rõ cko lắm ạ