K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

a/ Ta có AB=AC(gt)

Mà D và E là trung điểm của AB và AC

=> AD=BD=AE=EC

Xét tam giác ABE và tam giác ACD có:

AB=AC(gt)

Góc A chung

AE=AD(cmt)

=> tam giác ABE= tam giác ACD(c-g-c)

b/ Ta có tam giác ABE= tam giác ACD(c-g-c)

=> góc ABE=góc ACD

=> góc KBC=góc KCB vì tam giác ABC cân tại A

Vậy tam giác KBC cân tại K

 

1 tháng 3 2017

Xét tam giác ABE và tam giác ACD :

có :+ AB = AC ( theo GT )

        + \(\widehat{A}\)là góc chung 

         + AD = AE (theo GT )

=> tam giác ABE = tam giác ACD ( cgc)

b) ta có ; tam giác ADE -= tam giác ACD => BE = CD ( VÌ 2 CẠNH TƯƠNG ỨNG )

c) TA có : tam giác ABE = tam giác ACD => \(\widehat{B}\)\(\widehat{C}\)( VÌ 2 GÓC TƯƠNG ỨNG )

=> Tam giác KBC ( cân đỉnh K )

21 tháng 2 2018

éo bít @@@@éo bít @@@@éo bít @@@@éo bít @@@@

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H 

Kham khảo phần a nha , còn b + c tớ tự lm , d chưa nghĩ ra 

a, Ta cs : AB = AC ( cân tại A )

Lại cs : \(\hept{\begin{cases}D\in AB\\E\in AC\end{cases}\Rightarrow\hept{\begin{cases}AB=AC+DB\\AC=AE+EC\end{cases}}}\)

Và : \(\hept{\begin{cases}AD=DB\left(DlatrungdiemcuaAB\right)\\AE=EC\left(ElatrungdiemcuaAC\right)\end{cases}}\)

=> AD = BD = AE = EC

Xét \(\Delta\)ABE và \(\Delta\)ACD có :

AE = AD (cmt)

^A_chung

AB = AC (gt)

=> \(\Delta\)ABE = \(\Delta\)ACD(c.g.c)

b, Vì \(\Delta\)ABE = \(\Delta\)ACD 

=> BE = CD (2 cạnh tương ứng)

c, Xét \(\Delta\)DBC và \(\Delta\)ECB cs :

BD = EC (cmt)

^DBC = ^ECB (phần a)

BC_chung

=> \(\Delta\)DBC = \(\Delta\)ECB(c.g.c)

=> ^DCB = ^EBC (2 góc tương ứng)

Xét \(\Delta\)KBC cs :

^KBC = ^KCB (cmt)

=> đpcm

25 tháng 3 2020

d ) +) Xét ∆ABK và ∆ACK có

AB = AC (do ∆ ABC cân tại A)

AK : cạnh chung

BK = CK  (do ∆BCK cân tại K )

=> ∆ABK = ∆ACK (c-g-c)

=> BAK = CAK (2 góc tương ứng )

=> AK là phân giác góc BAC

Học tốt

_Nicole Elizabeth_

12 tháng 2 2019

Anh tự kẻ hình : 

a, xét tam giác ABE và tam giác ACD có  : góc A chung

AB = AC (gt) 

AE = 1/2AC do E là trđ của AC (gt)

AD = 1/2AB do D là trđ của AB (gt) 

=> AD = AE

=> tam giác ABE và tam giác ACD (c - g - c)

b,tam giác ABE và tam giác ACD (Câu a) 

=> BE = CD (đn) 

12 tháng 2 2019

A B C D E K

Cm: Ta có: AB = AD + DB

                 AC = AE + EC 

Và AD = DB (gt); AE = EC (gt); AB = AC

=> AD = DB = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

 góc A : chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: t/giác ABE = t/giác ACD (cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

=> góc ADC = góc AEB (hai góc tương ứng)

Mà góc ADC + góc CDB = 1800

      góc AEB + góc BEC = 1800

=> góc CDB = góc BEC 

Xét t/giác BDK và t/giác CEK

có góc KDB = góc KEC (cmt)

  DB = EC (cmt)

  góc DBK = góc ECK (cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> KB = KC (hai cạnh tương ứng)

=> t/giác KBC là t/giác cân tại K

c) Xét t/giác ABK và t/giác ACK

có AB = AC (gt)

 BK = KC (cmt)

 AK : chung

=> t/giác ABK = t/giác ACK (c.c.c)

=> góc BAK = góc KAC (hai góc tương ứng)

=> AK là tia p/giác của góc BAC

1 tháng 4 2020

A B C D E K

 Bạn có thể tham khảo :

 https://h.vn/hoi-dap/question/559045.html