K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

a) Có: AB=AM+BM

           AC=AN+NC

Mà AB=AC(gt) ; BM=NC(gt)

=>AM=AN

=>ΔAMN caan taij A

b) Có ΔABC cân tại A(gt)

=>\(\widehat{A}=180-2\widehat{B}=180-2\cdot50=180-30=50\)

Xét ΔANM cân tại A(gt)

=> \(\widehat{2ANM}=180-\widehat{A}=180-50=130\)

=>^ANM=65

c) Xét ΔABC cân tại A(gt)

=> \(\widehat{B}=\frac{180-\widehat{A}}{2}\)           (1)

Xét ΔANM cân tại A(cmt)

=> \(\widehat{AMN}=\frac{180-\widehat{A}}{2}\)     (2)

Từ (1)(2) suy ra:

^B=^AMN . Mà hai góc này ở vị trí soletrong

=>MN//BC

7 tháng 9 2016

a) Xét Δ ANB và Δ AMC có :

AB = AC (gt)

Góc BAN = Góc CAM ( chung Góc A )

Góc ANB = Góc ACM

Nên Δ ANB = Δ AMC ( g-c-g)

Ta có : Δ ANB = Δ AMC (cmt)

→ AN = AM ( 2 cạnh tương ứng )

Xét Δ AMN có : AN = AM → Δ ANM là Δ cân (dpcm)

b) Δ ABC cân tại A (gt)

\(\Rightarrow A=180^o-2B=180^o-30^o=50^o\)

Δ ANM cân tại A (gt)

\(\Rightarrow2ANM=180^O-A=180^O-50^O=130^O\)

\(\Rightarrow ANM=65^O\)

c) Xét Δ ANM cân tại A ( chứng minh a )

\(\Rightarrow AMN=ANM\) ( t/c Δ cân )

Xét Δ AMN có : góc ANM + AMN + NAM = 108 độ ( định lý tổng 3 góc trong một Δ )

\(\Rightarrow2ANM+NAM=180^o\)

\(\Rightarrow2ANM=180^o-NAM\left(1\right)\)

\(\Delta ABC\) có : \(ABC+ACB+BAC=180^O\) ( định lý tổng 3 góc trong một Δ )

\(\Rightarrow2ACB+BAC=180^0\)

\(\Rightarrow2ACB=180^o-BAC\left(2\right)\)

Từ (1) và (2) → \(ANM=ACB\) mà 2 góc này nằm ở vị trí đồng vị của 2 đoạn thẳng MN và BC cắt bởi BN → MN // BC (đpcm)

CHÚC BẠN HỌC TỐT !!!
ABCMN

 

 

3 tháng 9 2016

Ta có tam giác ABC cân tại A có góc A = 100 độ

=> Góc B = góc C = (180 độ - 100 độ) : 2 = 40 độ

Mà : AM = AN => Tam giác AMN cân tại A mà góc A = 100 độ

=> Góc AMN = góc ANM = (180 độ - 100 độ) : 2 = 40 độ

Từ đó dễ dàng suy ra góc AMN = góc ABC mà hai góc này ở vị trí đồng vị

=> MN // BC

14 tháng 1 2017

Hình chắc bạn tự vẽ được

Chứng minh

Vì AM=AN(gt) nên tam giác AMN cân tại A

=> góc AMN= góc ANM= (180 độ- 100 độ) :2=40 độ (1)

Xét tam giác ABC cân tại Acó:

góc ABC= góc ACB= ( 180 độ - 100 độ) : 2 =40 độ (2)

Tử (1) và (2) suy ra:

góc AMN= góc ABC (cùng =40 độ)

=>MN song song BC ( do có một cặp góc bằng nhau ở vị trí so le trong)

3 tháng 9 2016

Xét ΔAMN có: AM=AN(gt)

=> ΔAMN cân tại A

=> \(\widehat{AMN}=\frac{180-\widehat{A}}{2}\)                 (1)

Xét ΔABC cân tại A(gt)

=> \(\widehat{ABC}=\frac{180-A}{2}\)                 (2)

Từ (1)(2) suy ra: \(\widehat{AMN}=\widehat{ABC}\). Mà hai góc này ở vị trí đòng vị 

=>MN//BC

  

17 tháng 1 2018

Bài rất hay !

  A B C M E C

a) Xét tam giác ABM và tam giác ANM có

\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)

AB = AN (gt)

Chung AM

=> Tam giác ABM = Tam giác ANM (c.g.c)

b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ

            \(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ

mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)

=> \(\widehat{EBE}\)\(\widehat{CNM}\)

Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)

Xét tam giác BME và Tam giác NMC có

\(\widehat{EBE}\) =\(\widehat{CNM}\)

BM = NM

\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)

=> Tam giác BME  = Tam giác NMC (c.g.c)

=> BE = NC (2 cạnh tương ứng)

c) Xét tam giác ABN

Có AB = AN (gt) => Tam giác ABN cân

=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)

Ta có BE = NC (cmt)

AB = AN

mà AE = AB+BE, AC = AN + CN

=> AE = AC

=> Tam giác AEC cân

=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)

Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm

17 tháng 1 2018

Mình vẽ nhầm N thành C trên hình. bạn sửa lại dùm nhé ^^

27 tháng 5 2015

ta có  góc DFC=DBC(2 góc đồng vị) Mà DFC = FCB (DF// BC ; 2 góc so le trong) =>DBC=FCB .Mà ABC=ACB( tg ABC cân) =>FBD=DCF  Xét 2 tg AFC;tg ADB      Góc A chung     AC=AB   FBD =DCF(cmt) =>tg AFC= tg ADB(g-c-g)

22 tháng 6 2017

lam tiep di