K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BGCE có

H là trung điểm của BC

H là trung điểm của GE

Do đó; BGCE là hình bình hành

mà GE⊥CB

nên BGCE là hình thoi

=>BG=GC=CE=BE

b: Ta có: AG=2GH

mà GE=2GH

nên GA=GE

c: BC=8cm nên BH=4(cm)

\(AB=\sqrt{9^2+4^2}=\sqrt{97}\left(cm\right)\)

30 tháng 7 2016

Trên tia đối của tia ĐG vậy đâu có điểm Đ vậy b

30 tháng 7 2016

À sorry chờ mình xem lạibucminh

a: ΔACB cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

Xét tứ giác BGCE có

D là trung điểm chung của BC và GE

BC vuông góc GE

=>BGCE là hình thoi

=>BG=GC=CE=BE

b: Xét ΔABE và ΔACE có

AB=AC

BE=CE

AE chung

=>ΔABE=ΔACE

18 tháng 4 2016

a, + Xét tg HBG và tg HCG vuông tại H

Có : HG cạnh chung

Mà : AH là đường cao trong tg cân nên : 

AH là đường trung tuyến và là đường fan giác

=> BH=HC (vì AH là đường trung tuyến)

Nên: tg HBG=HCG (ch-cgv)

Vậy : BG=GC ( 2 cạnh tương ứng )         (1)

+ Xét tg BHE và tg HCE vuông tại H 

Có : HE cạnh chung

BH=HC 

Nên : tg BHE= tg HCE (ch-cgv)

Vậy : BE=EC (2 cạnh tương ứng )                    (2)

+Xét tg HGC và tg HCE vuông tại H

Có : HC cạnh chung

HG=HE

Nên : tg HGC=tg HCE 

Vậy : GC=ce  (2 cạnh tương ứng)                  (3)

+Xét tg BHG và tg BHE vuông tại H

BH cạnh chung

HG=HE 

nên : tg BHG = tg BHE

Vậy : BG=BE ( 2 cạnh tương ứng )                    (4)

Từ (1)(2)(3)  và (4) suy ra :BG=CG=BE=CE

b,Xét tg ABE và tg ACE 

Có : AB= AC ( tg ABC cân tại A)

BE=EC( cmt)

AE cạnh chung

Vậy : tg ABE = tg ACE (ccc)

c, k bt

d, k bt

e, Trong tg GBE có :

BG=BE 

Mà trong tam giác có 2 cạnh bằng nhau thì tg đó là tg cân hoặc đều

Nên : tg GBE là tg đều .

Vậy : đpcm 

18 tháng 4 2016

A B C E H G