K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

2) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)

nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

\(\Leftrightarrow AM\perp DE\)

hay \(AM\perp BC\)(đpcm)

 

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD
BD chung

Do đo: ΔBAD=ΔBED

=>DA=DE

b,c: Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

BA=BE

DA=DE

Do đó; BD là trung trực của AE
=>BD vuông góc với AE

=>BD vuông góc với FC

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE
góc ADF=góc EDC

Do đó: ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>D,E,F thẳng hàng

1 tháng 1 2023

còn mỗi anh là on còn mn off hết rồi hay sao ấy 

26 tháng 4 2018

a, Xét tam giác DAE và tam giác BAC có

      DAE = BAC ( đối đỉnh )

      AD = AB ( gt)

     AE= AC ( gt) 

=> tam giác DAE = tam giác BAC 

=> BC= DE

b, ta có  DAE = BAC = 90 độ ( 2 góc đối đỉnh )

 lại có BAD = CAE đối đỉnh 

=> BAD=CAE = 360 - (BaC + DAE)   tất cả trên 2 

<=> BAD= 360 -180  tâts cả trên 2 
<=> BAD = 180 trên 2

<=> BAD = 90 độ 

=> tam giác BAD vuông lại A

mà AB =AD (gt)

=> BAD vuông cân

=> DBA = BDA = 90 trên 2 = 45 độ

Chứng mình tương tự tam giác CAE vuông cân 

=>AEC=ACE= 90 trên 2 = 45 độ 

=> DBA=AEC=45 độ

mà chúng ở vị trí sole trong 

=> BD // CE

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

8 tháng 12 2023

a) Ta có AB = BE và tam giác ABC vuông tại A, nên ta có AB = AC. Do đó, tam giác ABC là tam giác cân tại A. Khi đó, phân giác BD cũng là đường trung tuyến của tam giác ABC, nên ta có AD = DC. 

 

Vì AB = BE, nên ta có AD = DC = DE. Vậy, ta đã chứng minh AD = DE.

 

b) Ta có AF = EC và tam giác ABC vuông tại A, nên ta có AB = AC. Do đó, tam giác ABC là tam giác cân tại A. Khi đó, phân giác BD cũng là đường trung tuyến của tam giác ABC, nên ta có BD = DC.

 

Vì AF = EC và AB = AC, nên ta có AF = BD. Từ đó, ta có tam giác AFB cân tại A và tam giác BDC cân tại D. 

 

Vì tam giác AFB cân tại A, nên góc BAF = góc BFA. Vì tam giác BDC cân tại D, nên góc BDC = góc CBD.

 

Từ đó, ta có góc BAF = góc BFA = góc BDC = góc CBD. Vậy, ta đã chứng minh BD vuông FC.

 

c) Ta đã chứng minh BD vuông FC ở câu b. Vì BD vuông FC và tam giác ABC vuông tại A, nên ta có AE // FC theo tính chất của các góc đối.

 

d) Ta đã chứng minh BD vuông FC ở câu b. Vì BD là phân giác của tam giác ABC, nên ta có AD = DE. Vì AF = EC, nên ta có AF = BD. 

 

Vậy, ta có AD = DE = AF. Từ đó, ta có ba điểm D, E, F thẳng hàng.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)EB tại E

=>DE\(\perp\)BC tại E

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

Ta có:BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD là đường trung trực của CF

=>BD\(\perp\)CF

c: Ta có: BA=BE

=>B nằm trên đường trung trực của AE(3)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE

Ta có:BD\(\perp\)AE

BD\(\perp\)FC

Do đó: AE//FC

d: Ta có; ΔDAF=ΔDEC

=>\(\widehat{ADF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDA}=180^0\)(hai góc kề bù)

nên \(\widehat{ADF}+\widehat{ADE}=180^0\)

=>F,D,E thẳng hàng

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC