Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: tia phân giác góc B cắt AE tại H
Xét ΔBFH vuông tại F và ΔBEH vuông tại E có
BH chung
góc EBH=góc FBH
=>ΔBFH=ΔBEH
=>HF=HE
mà HE<HC
nên HF<HC
Xét ΔAEO vuông tại E và ΔADO vuông tại D có
AO chung
\(\widehat{EAO}=\widehat{DAO}\)
DO đó: ΔAEO=ΔADO
Suy ra: OE=OD
Bạn tự vẽ hình nhé
a) Xét tam giác vuông ABD và tam giác vuông HBD có
góc ABD = góc HBD (BD là tia phân giác góc ABC)
BD chung
Vậy tam giác ABD = tam giác HBD (ch + gn)
=> BA = BH (2 cạnh tương ứng); góc ADB = góc HDB (2 góc tương ứng)
Ta có góc ADB = góc HDB => DB là tia phân giác góc ADH)
b) Ta có AE = AB (giả thiết)
=> tam giác ABE cân tại A
Mà Â = 900 (gt)
Nên tam giác ABD vuông cân tại A
=> AÊB = 450
Câu c hình như nhầm đề nên ko giải được câu d