Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng đi qua I song song với BC cắt AB tại D và AC tại E, ta có các hình thang sau: BDEC, BDIC, BIEC
DE // BC (theo cách vẽ)
⇒ ∠ I 1 = ∠ B 1 (hai góc so le trong)
Mà ∠ B 1 = ∠ B 2 (gt)
Suy ra: ∠ I 1 = ∠ B 2
Do đó: ∆ BDI cân tại D ⇒ DI = DB (1)
Ta có: ∠ I 2 = ∠ C 1 (so le trong)
∠ C 1 = ∠ C 2 (gt)
Suy ra: ∠ I 2 = ∠ C 2 do đó: ∆ CEI cân tại E
⇒ IE = EC (2)
DE = DI + IE (3)
Từ (1), (2), (3) suy ra: DE = BD + CE
Đáp án cần chọn là: D
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
Đáp án cần chọn là: B
Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^ (so le trong)
Mà D I B ^ = I B C ^ (gt) nên D I B ^ = D B I ^
Suy ra tam giác BDI cân đỉnh D.
Do đó DI = DB (1)
Ta có: IE // CB nên suy ra E I C ^ = B C I ^ (so le trong)
Mà E I C ^ = B C I ^ (gt) nên E C I ^ = E I C ^
Suy ra tam giác EIC cân đỉnh E
Do đó EI = EC (2)
Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE
=> DE = BD + CE
Đáp án cần chọn là: D
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
Đáp án cần chọn là: B
Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^ (so le trong)
Mà D B I ^ = I B C ^ (gt) nên D I B ^ = D B I ^
Suy ra tam giác BDI cân đỉnh D.
Do đó DI = DB (1)
Ta có: IE // CB nên suy ra E I C ^ = B C I ^ (so le trong)
Mà B C I ^ = E C I ^ (gt) nên E C I ^ = E I C ^
Suy ra tam giác EIC cân đỉnh E
Do đó EI = EC (2)
Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE
=> DE = BD + CE
a,
Do \(DE||BC\) (gt) \(\Rightarrow BDEC\) là hình thang
Do \(DE||BC\Rightarrow DI||BC\Rightarrow BDIC\) là hình thang
Do \(DE||BC\Rightarrow IE||BC\Rightarrow BIEC\) là hình thang
b.
Do \(DI||BC\Rightarrow\widehat{CBI}=\widehat{BID}\) (so le trong)
Mà \(\widehat{CBI}=\widehat{DBI}\) (do BI là phân giác góc B)
\(\Rightarrow\widehat{DBI}=\widehat{BID}\)
\(\Rightarrow\Delta BDI\) cân tại D
Tương tự ta có \(\widehat{ICB}=\widehat{CIE}\) (so le trong) và \(\widehat{ICB}=\widehat{ICE}\) (do IC là phân giác góc C)
\(\Rightarrow\widehat{CIE}=\widehat{ICE}\Rightarrow\Delta IEC\) cân tại E
c.
Từ câu b, do \(\Delta BDI\) cân \(\Rightarrow DB=DI\)
Do \(\Delta IEC\) cân \(\Rightarrow IE=CE\)
\(\Rightarrow BD+CE=DI+IE=DE\left(đpcm\right)\)