Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không có thời gian để giải mình cho đường click này nhé :https://olm.vn/hoi-dap/detail/22193932414.html
bạn k cho mình mình nhé!
mình bận ôn thi
mình không có thời gian để ghải nên mình cho bạn đương click này: https://olm.vn/hoi-dap/detail/22193932414.html
k nhass
b, Ta có:AB=AC<=>AE+EB=AD+DC mà AE=AD=>EB=DC
Xét tg BEC và tg CDB có:
-EB=DC(cm trên)
-EBC=DCB
-BC chung
=>tg BEC=tgCDB(c.g.c)
=>BEC=CDB=90o ( tương ứng)
=>CE vuông góc với AB.
Rùi đó.
a, xét tam giác ABE và tam giác ACD có:
AB=AC(gt); góc A chung; AD=AE(gt)
suy ra tam giác ABE= tam giác ACD(c.g.c)
suy ra BE=CD(đpcm)
b, do 2 tam giác ABE và ACD bằng nhau
suy ra góc ABE = góc ACD
mạt khác ABC=ACB(gt)
suy ra góc EBC= góc DCB
suy ra tam giác KBC cân tại K
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
d)chịu
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC
b, Chứng minh tam giác CBD cân
c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE
d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM
Giải
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)