Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ PH, PM, PN lần lượt vuông góc với BC, AB và AC
Ta có: PH = PM ( t/c điểm thuộc tia phân giác ) (1)
PH = PN (t/c điểm thuộc tia phân giác ) (2)
Từ (1)(2) => PM = PN => P thuộc tia phân giác góc BAC (3)
O là giao điểm của hai tia phân giác góc B và C
=> O thuộc tia phân giác góc BAC (4)
Từ (3)(4) => A, O, P thẳng hàng
vi O la giao diem cac phan giac cua tam giac . ABC nen O thuoc tia phan giac cua goc BAC(1)
ha PD vuong goc BC , PE vuong goc AC, PF vuong goc AB . vi P thoc tia A phân giác cua goc CBx nen PD=PE ,P lai thuoc tia phan giac cua goc BCy nen KP=KE.suy ra KE=KF dieu nay chung to K thuoc tia phan giac cua goc BAC(2)
tu (1)(2) suy ra OvaP thoc tia phac cua goc BAC . vay ba diem A,O ,P thang hang.
Các đg phân giác trong của góc B và góc C cắt nhau tại O nên AO là tia phân tia phân giác của góc A (1)
Hạ các đg vuông góc từ P lần lượt cắt tại M, N và Q đến các đoạn AB, AC và BC
Do P là giao điểm của các đường phân giác ngoài của góc B nên PM = QP ; tương tự cũng được PN = QP. Nên QM = QN => P cũng nằm trên tia phân giác của góc A (t/c tia phân giác của 1 góc) (2)
Từ (1) và (2) => A,O,P thẳng hàng
hình như bài nnayf bạn hỏi r mà