K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔBCD có 

\(\widehat{BAD}=\widehat{DBC}\)

\(\widehat{ABD}=\widehat{BDC}\)

Do đó: ΔADB\(\sim\)ΔBCD

b: Ta có: ΔADB\(\sim\)ΔBCD

nên DB/CD=AB/BD=AD/BC

=>5/CD=3/5=3,5/BC

=>CD=25/3(cm); BC=35/6(cm)

11 tháng 8 2017

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

19 tháng 3 2019

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) + ΔABE vuông tại A.

+ ΔBCD vuông tại C.

+ Ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy ΔBED vuông tại B.

b) + Áp dụng định lý Pytago trong ΔABE vuông tại A ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Áp dụng định lý Pytago trong ΔEBD vuông tại B ta có:

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

∆ABC ∽ ∆A'B'C' => ABABABA′B′ = BCBCBCB′C′= CACACAC′A′ = CABCCABCCABCCA′B′C′

hay 3AB3A′B′ = 7BC7B′C′ = 5AC5A′C′ = CABC55CABC55 = 311311

=> A'B' = 11cm;

B'C' = 7.1137.113 ≈ 25.67 cm

A'C' = 5.1135.113 ≈ 18,33 cm

22 tháng 4 2017

bài 30 trang 75 SGK Toán 8 Tập 2

Theo bài ra ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 9 2017

Theo định lý Py-ta-go ta có độ dài cạnh huyền là

\(\sqrt{5^{2} + 10^{2}}\)= \(\sqrt{25 + 100}\)= \(\sqrt{125}\)\(\approx\)11,1 (cm)

Vậy .........................

_______________ JK ~ Liên Quân Group ________________

16 tháng 10 2017

Hình chữ nhật

Giả sử ∆ ABC có ˆA=900A^=900 , M trung điểm của BC; AB = 5cm; AC = 10cm. Theo định lý Pi-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(BC=\sqrt{5^2+10^2}=\sqrt{125}\approx11,2cm\)

\(AM=\dfrac{1}{2}BC\) (tính chất tam giác vuông)

\(AM\approx\dfrac{1}{2}.11,2=5,6cm\)



4 tháng 3 2018

Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm

17 tháng 4 2020

A B C A' B' C'

\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)

Áp dụng tính chất DTSBN , ta có :

\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)

Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)

Với CABC và CA'B'C'  lần lượt là chu vi của tam giác ABC , A'B'C' 

\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)

\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)

\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)

12 tháng 11 2017

Chu vi tam giác ABC là: AB + BC + CA = 3 + 7 + 5 = 15 (cm)

Δ A’B’C’ Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC ⇒ Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8