K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAB có \(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)

=>\(\dfrac{2^2+3-AB^2}{2\cdot2\cdot\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(7-AB^2=4\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\cdot3=6\)

=>AB=1

b: Xét ΔABC có \(AB^2+BC^2=CA^2\)

nên ΔABC vuông tại B

=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC=\dfrac{1}{2}\cdot1\cdot\sqrt{3}=\dfrac{\sqrt{3}}{2}\)

Độ dài đường trung tuyến kẻ từ A là:

\(m_A=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{4+1}{2}-\dfrac{3}{4}}=\dfrac{\sqrt{7}}{2}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \(\overrightarrow {{u_{BC}}}  = \overrightarrow {BC}  = \left( { - 5; - 3} \right) \Rightarrow \overrightarrow {{n_{BC}}}  = \left( {3; - 5} \right)\) . Vậy phương trình tổng quát của đường thẳng BC là: \(3\left( {x - 3} \right) - 5\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 5y + 1 = 0\).

Độ dài đường cao AK của tam giác \(ABC\) hạ từ đỉnh A là: \(AK = d\left( {A,BC} \right) = \frac{{\left| {3.1 - 0.5 + 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 5} \right)}^2}} }} = \frac{4}{{\sqrt {34} }}\)

b) Ta có: \(\overrightarrow {BC}  = \left( { - 5; - 3} \right) \Rightarrow BC = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 3} \right)}^2}}  = \sqrt {34} \)

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AK.BC = \frac{1}{2}.\frac{4}{{\sqrt {34} }}.\sqrt {34}  = 2\)

28 tháng 2 2018

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

a) Do tam giác ABC là tam giác đều nên Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10 .

Theo định lý côsin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lý sin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

c) Ta có: BM + MC = BC nên MC = BC – BM = 6 - 2 = 4 cm.

Gọi D là trung điểm AM.

Áp dụng công thức độ dài đường trung tuyến trong tam giác ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

26 tháng 10 2023

a: Xét ΔABC có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{A}=180^0-75^0-45^0=60^0\)

Xét ΔABC có

\(\dfrac{AB}{sinC}=\dfrac{BC}{sinA}\)

=>\(\dfrac{AB}{sin45}=\dfrac{50}{sin60}\)

=>\(AB\simeq40,82\)

b: \(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC=\dfrac{1}{2}\cdot40,82\cdot50\cdot sin75\simeq985,73\)

c: Độ dài đường cao xuất phát từ A là:

\(2\cdot\dfrac{985.73}{50}=39,4292\left(\right)\)