Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(AB^2+AC^2=BC^2\left(3^2+4^2=5^2\right)\) => tam giác ABC vuông tại A (pytago đảo)
Áp dụng hệ thức ..... trong tg vuông : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=>\frac{1}{AH^2}=\frac{1}{4^2}+\frac{1}{3^2}=\frac{25}{144}=>25AH^2=144=>AH^2=\frac{144}{25}\)
\(=>AH=\sqrt{\frac{144}{25}}=\frac{12}{5}=2,4\left(cm\right)\)
AD là đg phân giác trong tg ABC
\(=>AD=\frac{2\sqrt{AB.AC.p\left(p-BC\right)}}{AB+AC}\left(p=\frac{AB+AC+BC}{2}\right)\)
\(=>AD=\frac{2\sqrt{AB.AC.\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-BC\right)}}{AB+AC}=\frac{12\sqrt{2}}{7}\left(cm\right)\)
quên mất,chưa tính BD,CD
-tính đc các góc B,C rồi suy ra tg ACD , ABD vuông tại D
rồi dùng pytago,có AB,AC,AD tính đc BD,CD
M D N B C A
Xét tam giác BMD và tam giác CND có :
\(\widehat{BMD}=\widehat{CND}=90^O\)
\(\widehat{BDM}=\widehat{CDN}\left(đ.đ\right)\)
=> tam giác BMD đồng dạng với tam giác CND ( g.g )